Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (1) : 76-84    https://doi.org/10.1007/s11707-012-0345-8
RESEARCH ARTICLE
The diversity of soil culturable fungi in the three alpine shrub grasslands of Eastern Qilian Mountains
Junzhong ZHANG1,3(), Baiying MAN2, Benzhong FU1, Li LIU1, Changzhi HAN1
1. Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China; 2. Sontan college, Guangzhou University, Guangzhou 511370, China; 3. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(195 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To understand the diversity of culturable fungi in soil at alpine sites, Rhododendron fruticosa shrubland, Salix cupularis fruticosa shrubland, and Dasiphoru fruticosa shrubland of the Eastern Qilian Mountains were selected to investigate. Three methods, including traditional culturing, rDNA internal transcribed spacer (ITS) sequence analysis, and economical efficiency analysis, were carried out to estimate the diversity of soil culturable fungi of these three alpine shrublands. A total of 35 strains of culturable fungi were cultured by dilution plate technique and were analyzed by rDNA ITS sequence. The diversity indices such as species abundance (S), Shannon–Wiener index (H), Simpson dominance index (D), and Pielou evenness index (J) of Rhododendron fruticosa shrubland, Salix cupularis fruticosa shrubland, and Dasiphoru fruticosa shrubland were ranged between 16 and 17, 2.66–2.71, 0.92, 0.95–0.97 respectively. The results showed that the diversity of soil fungi were abundant in these three types of alpine shrub grasslands, while further study should be done to explore their potential value.

Keywords alpine shrub grasslands      culturable fungi      rDNA ITS sequence analysis      diversity     
Corresponding Author(s): ZHANG Junzhong,Email:zhangjunzhong@foxmail.com   
Issue Date: 05 March 2013
 Cite this article:   
Junzhong ZHANG,Baiying MAN,Benzhong FU, et al. The diversity of soil culturable fungi in the three alpine shrub grasslands of Eastern Qilian Mountains[J]. Front Earth Sci, 2013, 7(1): 76-84.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0345-8
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I1/76
Shrub grassland typesAltitude/mGeographic coordinateSoil typespH valueUse typesVegetation condition
Rhododendron fruticosa shrubland3 22037.16 °E102.77 °NAlpine shrubsmeadow soil7.71±0.03Winter pastureRhododendron anthopogonoides, Rhododendron thymifolium, Rhododendron qsing haiense and Rhododendron capitatum are the dominant species in the site, the coverage of shrubs are around 54%.
Salix cupularis fruticosa shrubland3 13037.17 °E102.76 °NAlpine shrubsmeadow soil6.47±0.04Winter pastureSalix taiwanalpina is the absolute dominant species, and Potentilla fruticosa is the companion species, the coverage of shrubs are around 78%.
Dasiphoru fruticosa shrubland3 02037.18 °E102.77 °NSubalpine shrubs meadow soil7.45±0.02Winter pasturePotentilla fruticosa is the absolute dominant species and Salix taiwanalpina is the companion species in the site, coverage of shrubs are around 75%.
Tab.1  Basic status of the sampling sites
Taxonomic StatusRhododendron fruticosa shrublandSalix cupularis fruticosa shrublandDasiphoru fruticosa shrubland
Quantity/( × 104cfu·g-1)Percentage/%Quantity/( × 104cfu·g-1)Percentage/%Quantity/( × 104cfu·g-1)Percentage/%
Mortierella0.397.590.295.790.4912
Doratomyces28.1328.3214.3512.1211.0812.25
Leptosphaeria0.397.590.295.790.112.66
Cladosporium0.132.530.295.790.164
Verticillium0.193.790000
Mucor0.458.860.367.240.276.66
Tolypocladium0.132.53000.164
Beauveria0.132.530.142.8900
Hypocrea000.071.440.112.66
Truncatella0.326.320.224.340.225.33
Cordyceps0.061.26000.112.66
Trichoderma0.265.060.448.690.164
Nectria00000.112.66
Didymella00000.164
Bionectria0.7113.920.5110.140.4912
Alternaria0.397.590.224.340.112.66
Penicillium00000.164
Geomyces000.071.4400
Fusarium0.326.320.448.690.112.66
Scopulariopsis0.458.860.448.690.4410.66
Aspergillus000.071.4400
Phaeosphaeria0.193.790.295.7900
Other genera0.5210.120.6613.040.4912
Tab.2  The quantity and percentages of fungi
Fig.1  Phylogenetic analysis of the alpine grasslands of soil fungi diversity based on ITS rDNA sequences
Number of strain(Accession number)Fragment length/bpReference taxa/(Accession number)Similarity/%
1 (FJ025159)634Mortierellaceae sp. (DQ317354)99
7 (FJ025195)581Doratomyces sp. (EU301641)98
16 (FJ025180)556Leptosphaeria sp.(DQ093683)98
17 (FJ025173)639Tolypocladium cylindrosporum (AB208110)99
22 (FJ623268)610Trichoderma oblongisporum (DQ083020)99
27 (FJ025187)650Mortierella alpina (AJ271629)98
34 (FJ025149)638Geomyces sp. (AY345348)99
59 (FJ025142)651Penicillium camemberti (DQ681327)99
79 (FJ025153)634Mortierellaceae sp. (DQ317354)99
85 (FJ025179)499Tolypocladium cylindrosporum (DQ449656)99
93 (FJ025174)631Mortierella alpina (AY310443)99
F1 (EF611096)534Fusarium sp. (DQ657854)100
F4 (EF611093)537Fusarium sp. (DQ657854)100
9 (FJ025161)647Mortierella alpina (AJ271629)98
10 (FJ025216)579Doratomyces sp. (EU301641)97
29 (FJ025217)564Truncatella angustata (AF377300)97
37 (FJ025200)586Trichoderma koningii (AF055219)99
51 (FJ025215)544Aspergillus sydowii (EF652473)99
62 (FJ025152)640Mortierellaceae sp. (DQ317354)99
69 (FJ025144)653Mortierella alpina (AJ271629)98
83 (FJ025212)554Penicillium canescens (DQ658168)99
87 (FJ025213)630Mortierellaceae sp. (DQ317354)98
91 (FJ025154)640Mortierellales sp. (EF126342)99
5 (FJ025164)634Mortierellaceae sp. DQ31735499
24 (FJ025198)622Mucor hiemalis EU32619699
31 (FJ025218)579Doratomyces sp. EU30164198
35 (FJ025150)634Cordyceps crassispora AB06771499
60 (FJ025143)652Mortierella alpina AJ27162997
76 (FJ025210)531Geomyces sp. AY34534899
80 (FJ025214)552Penicillium canescens DQ65816899
84 (FJ025170)645Mortierellales sp. EF12634298
92 (FJ025155)633Mortierellaceae sp. DQ31735499
100 (FJ025176)646Tolypocladium sp. DQ09771599
F3 (EF611094)540Fusarium tricinctum AY188923100
F12 (EF611085)519Fusarium oxysporum EF01721499
Tab.3  Phylogenetic relation to nearest neighbors of strains isolated from alpine shrubland soil
Diversity indexRhododendron fruticosa shrublandSalix cupularis fruticosa shrublandDasiphoru fruticosa shrubland
Species richness161617
H2.662.682.71
D0.920.920.92
J0.960.960.95
Tab.4  Soil fungi diversity of whole community and different samples
1 Allen M F, Allen E B (1992). Mycorrhizae and plant community development: mechanisms and patterns. In: rroll G C, Wicklow D T, eds. The Fungal Community . New York: Marcel Dekker
2 Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol , 215(3): 403-410
3 Anderson I C, Campbell C D, Prosser J I (2003). Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol , 5(1): 36-47
4 Atlas R M, Bartha R (1998). Microbial Ecology: Fundamentals and Applications, 4th ed. Menlo Park: Benjamin/Cummings
5 Bardgett R D, Frankland J C, Whittaker J B (1993). The effects of agricultural management on the soil biota of some upland grasslands. Agric Ecosyst Environ , 45(1-2): 25-45
6 Borneman J, Skroch P W, O’Sullivan K M, Palus J A, Rumjanek N G, Jansen J L, Nienhuis J, Triplett E W (1996). Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol , 62(6): 1935-1943
7 Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution , 6: 227-242
8 Frankland J C, Dighton J, Boddy L (1990). Methods for studying fungi in soil and forest litter. Methods in Microbioly , 22: 343-404
9 Gams W (1992). The analysis of communities of saprophytic microfungi with special reference to soil fungi. In: nterhoff W, ed. Fungi in Vegetation Science . Boston: Kluwer Academic
10 Gardes M, Bruns T D (1993). ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol , 2(2): 113-118
doi: 10.1111/j.1365-294X.1993.tb00005.x
11 Griffiths B S, Ritz K, Bardgett R D, Cook R, Christensen S, Ekelund F, S?rensen S J, B??th E, Bloem J, Ruiter P C, Dolfing J, Nicolardot B (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity ecosystem function relationship. Oikos , 90(2): 279-294
12 Hall T A (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser , 41: 95-98
13 Hawksworth D L (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res , 105(12): 1422-1432
14 Hibbett D S, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson R H (2011). Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev , 25(1): 38-47
15 Hirsch P R, Mauchline T H, Clark I M (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem , 42(6): 878-887
16 Kj?ller A, Struwe S (1982). Microfungi in ecosystems: fungal occurrence and activity in litter and soil. Oikos , 39(3): 391-422
17 Kowalchuk G A, Gerards S, Woldendorp J W (1997). Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electrophoresis of specifically amplified 18s rDNA. Appl Environ Microbiol , 63(10): 3858-3865
18 Kuninaga S, Natsuaki T, Takeuchi T, Yokosawa R (1997). Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr Genet , 32(3): 237-243
19 Larena I, Salazar O, González V, Julián M C, Rubio V (1999). Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol , 75(2-3): 187-194
20 Li Y C, Yang Z L, Tolgor B (2009). Phylogenetic and biogeographic relationships of Chroogomphus species as inferred from molecular and morphological data. Fungal Divers , 38: 85-104
21 Mello A, Napoli C, Murat C, Morin E, Marceddu G, Bonfante P (2011). ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia , 103(6): 1184-1193
22 Swofford D L (2002). PAUP 4.0 b10: Phylogenetic Analysis Using Parsimony. Sunderland: Sinauer Associates
23 Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000). Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol , 40(3): 169-176
24 Tebbe C C, Vahjen W (1993). Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol , 59(8): 2657-2665
25 Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res , 25(24): 4876-4882
26 Thorn R G, Reddy C A, Harris D, Paul E A (1996). Isolation of saprophytic basidiomycetes from soil. Appl Environ Microbiol , 62(11): 4288-4292
27 Tilman D A, Knops J, Wedin D (1997). The influence of functional diversity and composition on ecosystem processes. Science , 277(5330): 1300-1302
28 Unterseher M, Jumpponen A, Opik M, Tedersoo L, Moora M, Dormann C F, Schnittler M (2011). Species abundance distributions and richness estimations in fungal metagenomics—lessons learned from community ecology. Mol Ecol , 20(2): 275-285
29 van Elsas J D, Duarte G F, Keijzer-Wolters A, Smit E (2000). Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods , 43(2): 133-151
30 Wardle D A, Giller K E (1996). The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem , 28(12): 1549-1554
31 White T J, Bruns T, Lee S, Taylor J (1990). Amplification and direct sequencing of fungal ribossomal RNA genes for phylogenetics. In: nis M A, Gelfand D H, Sninsky J J, White J W, eds. PCR Protocols: a Guide to Methods and Applications . New York: Academic Press
32 Xu L, Ravnskov S, Larsen J, Nilsson R H, Nicolaisen M (2012). Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem , 46: 26-32
[1] Yanyun ZHAO,Xiangming HU,Jingtao LIU,Zhaohua LU,Jiangbao XIA,Jiayi TIAN,Junsheng MA. Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta[J]. Front. Earth Sci., 2015, 9(3): 567-577.
[2] Mengzhen XU,Zhaoyin WANG,Baozhu PAN,Guoan YU. The assemblage characteristics of benthic macroinvertebrates in the Yalutsangpo River, the highest major river in the world[J]. Front. Earth Sci., 2014, 8(3): 351-361.
[3] Stephen J. MORREALE, Kristi L. SULLIVAN, . Community-level enhancements of biodiversity and ecosystem services[J]. Front. Earth Sci., 2010, 4(1): 14-21.
[4] Yongqin LIU, Tandong YAO, Nianzhi JIAO, Shichang KANG, Yonghui ZENG, Xiaobo LIU. Abundance and diversity of snow bacteria in two glaciers at the Tibetan Plateau[J]. Front Earth Sci Chin, 2009, 3(1): 80-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed