Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    0, Vol. Issue () : 248-257    https://doi.org/10.1007/s11707-009-0022-8
RESEARCH ARTICLE
China summer precipitation simulations using an optimal ensemble of cumulus schemes
Shuyan LIU1,3(), Wei GAO2,3, Min XU1, Xueyuan WANG4, Xin-Zhong LIANG1
1. Division of Illinois State Water Survey, Institute of Natural Resource Sustainability, University of Illinois, Champaign, IL61820, USA; 2. USDA-UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA; 3. Joint Laboratory for Environmental Remote Sensing and Data Assimilation, East China Normal University and Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Shanghai 200062, China; 4. 4Department of Atmospheric Sciences, Nanjing University, Nanjing 210093, China
 Download: PDF(893 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

RegCM3 (REGional Climate Model) simulations of precipitation in China in 1991 and 1998 are very sensitive to the cumulus parameterization. Among the four schemes available, none has superior skills over the whole of China, but each captures certain observed signals in distinct regions. The Grell scheme with the Fritsch-Chappell closure produces the smallest biases over the North; the Grell scheme with the Arakawa-Schubert closure performs the best over the southeast of 100°E; the Anthes-Kuo scheme is superior over the northeast; and the Emanuel scheme is more realistic over the southwest of 100°E and along the Yangtze River Basin. These differences indicate a strong degree of independence and complementarity between the parameterizations. As such, an ensemble is developed from the four schemes, whose relative contributions or weights are optimized locally to yield overall minimum root-mean-square errors from observed daily precipitation. The skill gain is evaluated by applying the identical distribution of the weights in a different period. It is shown that the ensemble always produces gross biases that are smaller than the individual schemes in both 1991 and 1998. The ensemble, however, cannot eliminate the large rainfall deficits over the southwest of 100°E and along the Yangtze River Basin that are systematic across all schemes. Further improvements can be made by a super-ensemble based on more cumulus schemes and/or multiple models.

Keywords Regional Climate Model      cumulus schemes      optimal ensemble     
Corresponding Author(s): LIU Shuyan,Email:liusy@illnois.edu   
Issue Date: 05 June 2009
 Cite this article:   
Shuyan LIU,Wei GAO,Min XU, et al. China summer precipitation simulations using an optimal ensemble of cumulus schemes[J]. Front Earth Sci Chin, 0, (): 248-257.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0022-8
https://academic.hep.com.cn/fesci/EN/Y0/V/I/248
Fig.1  The RegCM3 computational domain. Outlined are four key regions as labeled; the hatched edge areas are the buffer zones where lateral boundary conditions (LBC) are specified.
Fig.2  Monthly mean precipitation (mm·day) averaged over the four regions outlined in Fig. 1 for observations (OBS), 1982-2005 climatology averages (AVG) and the RCM simulations using the GFC, GAS, AK, and MIT cumulus schemes for June, July, and August of 1991 and 1998
Fig.3  RCM precipitation (mm·day) biases (from observations) using the GFC, GAS, AK, and MIT cumulus schemes for the 1991 and 1998 summers (JJA)
Fig.4  Ensemble precipitation (mm·day) biases (from observations) in the 1991 (a,b) and 1998 (c,d) summers (JJA) based on the optimization of the 1998 (a,c) and 1991 (b,d) training period
Fig.5  The rms errors (mm·day) and correlation coefficients (%) between observed and simulated daily precipitation in the 1998 () and 1991 () summers with the GFC, GAS, AK, and MIT cumulus schemes as well as their optimal ensemble using 1998 (ENS1998) or 1991 (ENS1991) as the training period. The statistics are shown for the four regions outlined in Fig. 1 based on the 1 () and 2 () methods; see text for details.
1 Anthes R A (1977). A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Wea Rev , 105: 270-286
doi: 10.1175/1520-0493(1977)105<0270:ACPSUA>2.0.CO;2
2 Cressman G (1959). An operational objective analysis system. Mon Wea Rev , 87: 367-374
doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
3 Davies H C, Turner R E (1977). Updating prediction models by dynamical relaxation: An examination of the technique. Quart J Roy Met Soc , 103: 225-245
doi: 10.1002/qj.49710343602
4 Dickinson R E, Henderson-Sellers A, Kennedy P J (1993). Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO , 72
5 Ding Y H (1993). Research on the 1991 Persistent, Severe Flood over Yangtze-Huai River Valley (in Chinese). Beijing: Chinese Meteorological Press, 255
6 Ding Y H (1994). Monsoons Over China. Kluwer Academic , 419
7 Ding Y H, Liu Y (2001). Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX Field Experiment I 1998. J Meteor Soc Japan , 79: 255-276
8 Dudhia J, Gill D, Guo Y R, Manning K, Wang W, Chriszar J (2000). PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3 (http://www.mmm.ucar.edu/mm5/doc.html)
9 Elguindi N, Bi X, Giorgi F, Nagarajan B, Pal J, Solmon F, Rauscher S, Zakey A (2007). RegCM Version 3.1 User’s Guide (http://users.ictp.it/~pubregcm/RegCM3/)
10 Emanuel K A (1991). A scheme for representing cumulus convection in large-scale models. J Atmos Sci , 48: 2313-2335
doi: 10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
11 Emanuel K A, Zivkovic-Rothman M (1999). Development and evaluation of a convection scheme for use in climate models. J Atmos Sci , 56: 1766-1782
doi: 10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
12 Fritsch J M, Chappell C F (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci , 37: 1722-1733
13 Fu C, Wei H, Chen M, Su B, Zhao M, Zheng W (1998). Simulation of the evolution of summer monsoon rainbelts over eastern China from regional climate model. Chinese J Atmos Sci , 4: 522-534
14 Gao X, Luo Y, Lin W, Zhao Z, Giorgi F (2003). Simulation of effects of land use change on climate in China by a regional climate model. Adv Atmos Sci , 4: 583-592
15 Giorgi F, Bates G T, Nieman S J (1993a). The multi-year surface climatology of a regional atmospheric model over the western United States. J Climate , 6: 75-95
doi: 10.1175/1520-0442(1993)006<0075:TMSCOA>2.0.CO;2
16 Giorgi F, Francisco R, Pal J S (2003). Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: Effects of temperature and water vapor disaggregation. Journal of Hydrometeorology , 4: 317-333
doi: 10.1175/1525-7541(2003)4<317:EOASTA>2.0.CO;2
17 Giorgi F, Marinucci M R, Bates G T (1993b). Development of a second generation regional climate model (RegCM2) I: Boundary layer and radiative transfer processes. Mon Wea Rev , 121: 2794-2813
doi: 10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2
18 Giorgi F, Marinucci M R, Bates G T (1993c). Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon Wea Rev , 121: 2814-2832
doi: 10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2
19 Giorgi F, Shields C (1999). Tests of precipitation parameterizations available in latest version of NCAR regional climate model (RegCM) over continental United States. J Geophys Res , 104: 6353-6375
doi: 10.1029/98JD01164
20 Grell G (1993). Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev , 121: 764-787
doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
21 Grell G A, Dudhia J, Stauffer D R (1994). A Description of the Fifth-Generation Penn-State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, CO , 122
22 Holtslag A A M, Boville B A (1993). Local versus nonlocal boundary-layer diffusion in a global climate model. J Climate , 6: 1825-1842
doi: 10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
23 Kanamitsu M, Ebisuzaki W, Woolen J, Yang S K, Hnilo J J, Firoino M, Potter G L (2002). The NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc , 83: 1631-1643
doi: 10.1175/BAMS-83-11-1631(2002)083<1631:NAR>2.3.CO;2
24 Kiehl J T, Hack J J, Bonan G B, Boville B A, Breigleb B P, Williamson D, Rasch P (1996). Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note NCAR/TN-420+STR, National Center for Atmospheric Research, Boulder, CO , 158
25 Leung L R, Ghan S J, Zhao Z C, Luo Y, Wang W C, Wei H L (1999). Intercomparison of regional climate simulations of the 1991 summer monsoon in eastern Asia. J Geophys Res , 104: 6425-6454
doi: 10.1029/1998JD200016
26 Lau K M, Yang S (1996). Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J Climate , 9: 965-985
doi: 10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2
27 Liang X Z (1986). The design of IAP GCM and the simulation of climate and interseasonal variability. Ph.D. Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences , 250
28 Liang X Z, Li L, Dai A, Kunkel K E (2004a). Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett , 31: L24208.
doi: 10.1029/2004GL021054
doi: 10.1029/2004GL021054
29 Liang X Z, Li L, Kunkel K E, Ting M, Wang J X L (2004b). Regional climate model simulation of U.S. precipitation during1982-2002. Part I: Annual cycle. J Climate , 17: 3510-3528
doi: 10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2
30 Liang X Z, Samel A N, Wang W C (1995). Observed and GCM simulated decadal variability of monsoon rainfall in east China. Climate Dynamics , 11: 103-114
doi: 10.1007/BF00211676
31 Liang X Z, Samel A N, Wang W C (2002). China rainfall interannual predictability: Dependence on the annual cycle and surface anomalies. J Climate , 15: 2555-2561
doi: 10.1175/1520-0442(2002)015<2555:CSRIPD>2.0.CO;2
32 Liang X Z, Wang W C (1998). Associations between China monsoon rainfall and tropospheric jets. Quart. J R Meteorol Soc , 124: 2597-2623
doi: 10.1002/qj.49712455204
33 Liang X Z, Wang W C, Samel A N (2001). Biases in AMIP model simulations of the east China monsoon system. Climate Dynamics , 17: 291-304
doi: 10.1007/s003820000136
34 Liang X Z, Xu M, Gao W, Kunkel K E, Slusser J, Dai Y, Min Q, Houser P R, Rodell M, Schaaf C B, Gao F (2005). Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J Geophys Res , 110: D11107
doi:10.1029/2004JD005579.
doi: 10.1029/2004JD005579
35 Liang X Z, Xu M, Kunkel K E, Grell G A, Kain J (2007). Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Climate , 20: 5201-5207
doi: 10.1175/JCLI4306.1
36 Lin J L, Weickman K M, Kiladis G N, Mapes B E, Schubert S D, Suarez M J, Bacmeister J T, Lee M I (2008). Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Climate , 21: 4541-4567
doi: 10.1175/2008JCLI1816.1
37 Liu S (2006). CWRF application in east China monsoon area. Ph.D. Dissertation , NanjingUniversity of Information Science & Technology, 170
38 Liu S, Liang X Z, Gao W, Zhang H (2008). Application of Climate—Weather Research and Forecasting Model (CWRF) in China: Domain Optimization. Chinese Atmos Sci , 32: 457-468
39 Pal J S, Small E E, Eltahir E A B (2000). Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes with RegCM. J Geophys Res , 105(D24): 29579-29594
doi: 10.1029/2000JD900415
40 Pan J, Zhai G, Gao K (2002). Comparisons of three convection parameterization schemes in regional climate simulations. Chinese J Atmos Sci , 2: 206-220
41 Samel A N, Liang X Z (2003). Understanding relationships between the 1998 Yangtze River flood and northeast Eurasian blocking. Climate Research , 23, 149-158
doi: 10.3354/cr023149
42 Samel A N, Wang W C, Liang X Z (1999). The monsoon rainband over China and relationship with the Eurasian circulation. J Climate , 12: 115-131
43 Sundqvist H (1988). Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. In: Schlesinger M E, ed. Physically-Based Modeling and Simulation of Climate and Climate Change. Kluwer , 433-461
44 Tao S, Chen L (1987). A review of recent research on the east Asia summer monsoon in China. In: Krishnamurti T N, ed. Monsoon Meteorology . New York: Oxford University Press, 60-92
45 Wang W, Seaman N L (1997). A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev , 125: 252-278
doi: 10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2
46 Wang W C, Gong W, Wei H (2000). A regional model simulation of 1991 severe precipitation event over the Yangtze-Huai River Valley. Part I: Precipitation and circulation statistics. J Climate , 13, 74-92
doi: 10.1175/1520-0442(2000)013<0074:ARMSOT>2.0.CO;2
47 Wang Y Q, Sen O L, Wang B (2003). A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J Climate , 16: 1721-1738
doi: 10.1175/1520-0442(2003)016<1721:AHRRCM>2.0.CO;2
48 Yang S, Lau K M, Yoo S H, Kinter J L, Miyakoda K, Ho C H (2004). Upstream subtropical signals preceding the Asian summer monsoon circulation. J Climate , 17: 4213-4229
doi: 10.1175/JCLI3192.1
49 Zeng Q C, Liang X Z, Zhang M H (1988a). Numerical simulation of monsoons and the abrupt seasonal changing of atmospheric general circulation. Chinese J Atmos Sci (special issue), 22-42
50 Zeng X, Zhao M, Dickinson R E (1998b). Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Climate , 11: 2628-2644
doi: 10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2
51 Zhang G J (2003). Roles of tropospheric and boundary layer forcing in the diurnal cycle of convection in the U.S. southern great plains. Geophys Res Lett , 30: 2281.
doi: 10.1029/2003GL018554
doi: 10.1029/2003GL018554
52 Zhou J L, Tits A L, Lawrence C T (1997). User’s guide for FFSQP version 3.7: A FORTRAN code for solving constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality and linear constraint. Institute for Systems Research, University of Maryland Tech Rep SRC-TR-92-107r4 , 44
53 Zhu J, Liang X Z (2007). Regional climate model simulation of U.S. precipitation and surface air temperature during1982-2002: Interannual variation. J Climate , 20: 218-232
doi: 10.1175/JCLI4129.1
[1] Xueyuan WANG, Jianping TANG, Xiaorui NIU, Shuyu WANG. An assessment of precipitation and surface air temperature over China by regional climate models[J]. Front. Earth Sci., 2016, 10(4): 644-661.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed