Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    2009, Vol. 3 Issue (2) : 221-225    https://doi.org/10.1007/s11707-009-0027-3
RESEARCH ARTICLE
Fe(II) oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures in the presence of arsenate
Xiaofen YANG, Hongmei WANG(), Linfeng GONG, Hima HASSANE, Zhengbo JIANG
Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China
 Download: PDF(205 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fe2+ oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures was investigated in batch cultures in the presence of arsenate. The pH value was periodically monitored and Fe2+ content was analyzed by the 1,10-phenanthroline method. ICP-AES was employed for the analysis of As(V) concentration in the solution phase. Precipitates were collected and analyzed by X-ray diffraction. Slight enhancement of iron bio-oxidation was observed in mixed cultures with the two greatest As(V) concentrations (1.0 and 5.0 mg/L As), which were enriched from sediment samples in an abandoned copper mine site. As(V) concentrations decreased with time, indicating either the co-precipitation with or the adsorption by jarosite, the major sink of solid phase. Our data suggest that biogenically synthesized jarosite may play an important role in the attenuation of soluble arsenate in natural aquatic environments.

Keywords Acidithiobacillus ferrooxidans      arsenate      jarosite      bio-oxidation      geomicrobiology     
Corresponding Author(s): WANG Hongmei,Email:hmwang@cug.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Xiaofen YANG,Hongmei WANG,Linfeng GONG, et al. Fe(II) oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures in the presence of arsenate[J]. Front Earth Sci Chin, 2009, 3(2): 221-225.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0027-3
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I2/221
Fig.1  Changes in pH (a, b, c) and Fe concentration (d, e, f) in the presence and absence of As(V). A.f-0. culture without As(V); A.f-0.01. culture with 0.1 mg/L As(V); A.f-0.1. culture with 0.01 mg/L As(V); W3-0. W3 culture without As(V); W3-0.01. W3 culture with 0.01 mg/L As(V); W3-0.1. W3 culture with 0.1 mg/L As(V); S3-0. S3 culture without As(V); S3-0.01. S3 culture with 0.01 mg/L As(V); S3-0.1. S3 culture with 0.1 mg/L As(V)
Fig.2  Changes in pH (a) and Fe concentration (b) in culture S3 in the presence of 0.1-5 mg/L of As(V). S3-0.1. S3 culture with 0.1 mg/L As(V); S3-0.5. S3 culture with 0.5 mg/L As(V); S3-1.0. S3 culture with 1.0 mg/L As(V); S3-5.0. S3 culture with 5 mg/L As(V)
initial0.100.501.005.00
end00.300.981.49
ratios in As concentration between the solid and the liquid phase at the end /%10040270
Tab.1  Changes in the concentration of dissolved As(V)/ (mg·L)
Fig.3  X-ray patterns of the biogenic jarosites. (a), (b), (c), (d), precipitates from S3 cultures with initial 5.0, 1.0, 0.5, 0 mg/L As(V); S3-0. S3 culture without As(V). S3-0.5: S3 culture with 0.5 mg/L As(V ); S3-1.0. S3 culture with 1.0 mg/L As(V); S3-5.0. S3 culture with 5 mg/L As(V)
1 Alpers C N, Nordstrom D K, Ball J W (1989). Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California, USA. Sci Géol Bull , 42: 281-298
2 Bigham J M, Schwertmann U, Traina, S J, Winland R L, Wolf M (1996). Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta , 60: 2111-2121
doi: 10.1016/0016-7037(96)00091-9
3 Butcher B G, Deane S M, Rawlings D E (2000). The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol , 66: 1826-1833
doi: 10.1128/AEM.66.5.1826-1833.2000
4 Collinet M N, Morin D (1990). Characterization of arsenopyrite oxidizing Thiobacillus.Tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie van Leeuwenhoek , 57: 237-244
doi: 10.1007/BF00400155
5 Dave S R, Gupta K H, Tipre D R (2008). Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents. Bioresource Technology , 99: 7514-7520
doi: 10.1016/j.biortech.2008.02.019
6 Duquesne K, Lebrun S, Casiot C, Bruneel O, Personné J-C, Leblanc M, Elbaz-Poulichet F, Morin G, Bonnefoy V (2003). Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol , 69: 6165-6173
doi: 10.1128/AEM.69.10.6165-6173.2003
7 Dutrizac J E, Jambor J L (1987). The behavior of arsenic during jarosite precipitation: arsenic precipitation at 97 oC from sulfate or chloride media. Can Metall Q , 26: 91-101
8 Ehrlich H L (1963). Bacterial action on orpiment. Econ Geol , 58: 991-994
doi: 10.2113/gsecongeo.58.6.991
9 Ehrlich H L (1964). Bacterial oxidation of arsenopyrite and enargite. Econ Geol , 59: 1306-1312
doi: 10.2113/gsecongeo.59.7.1306
10 Fuller C C, Davis J A, Waychunas G A (1993). Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta , 57: 2271-2282
doi: 10.1016/0016-7037(93)90568-H
11 Gieré R, Sidenko N V, Lazareva E V (2003). The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem , 18: 1347-1359
doi: 10.1016/S0883-2927(03)00055-6
12 Hutchins S R, Davidson M S, Brierley J A, Brierley C L (1986). Microorganisms in reclamation of metals. Annu Rev Microbiol , 40: 311-336
doi: 10.1146/annurev.mi.40.100186.001523
13 Leduc L G, Ferroni G D (1994). The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol Revs , 14: 103-119
doi: 10.1111/j.1574-6976.1994.tb00082.x
14 Mamtaz R, Bache D H (2001). Reduction of arsenic in groundwater by coprecipitation with iron. J Water Supply Res Technol , 50: 313-324
15 Mandl M, Matulova P, Docekalova H (1992). Migration of AsIII during bacterial oxidation of arsenopyrite in chalcopyrite concentrates by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol , 38: 429-431
doi: 10.1007/BF00170099
16 Morin G, Juillot F, Casiot C, Bruneel O, Personné J-C, Elbaz-Poulichet F, Leblanc M, Ildefonse P, Calas G (2003). Bacterial formation of tooeleite and mixed As(III)/(V)-Fe(III) gels in the Carnoulés acid mine drainage, France. A XANES, XRD and SEM study. Environ Sci Technol , 37: 1705-1712
doi: 10.1021/es025688p
17 Pichler T, Veizer J, Hall G E M (1999). Natural input of arsenic into a coral-reef ecosystem by hydrothermal fluids and its removal by Fe(III) oxyhydroxides. Environ Sci Technol , 33: 1373-1378
doi: 10.1021/es980949+
18 Riveros P A, Dutrizac J E, Spencer P (2001). Arsenic disposal practices in the metallurgical industry. Can Metall Q , 40: 395-420
19 Savage K S, Bird D K, Ashley R P (2000). Legacy of the California gold rush: environmental geochemistry of arsenic in the southern Mother Lode Gold District. Int Geol Rev , 42: 385-415
20 Savage K S, Bird D K, O’Day P A (2005). Arsenic speciation in synthetic jarosite. Chem Geol , 215: 473-498
doi: 10.1016/j.chemgeo.2004.06.046
21 Tahija D, Huang H H (2000). Factors influencing arsenic coprecipitation with ferric hydroxide. In: Young C, ed. Proceeding of Minor Elements 2000: Processing and Environmental Aspects of As, Sb, Se, Te, and Bi, Society for Mining, Metallurgy, and Exploration. Littleton CO , 149-155
22 Tuovinen O H, Niemel? S I, Gyllenberg H G (1971). Tolerance of Thiobacillus ferrooxidans to some metals. Antonie van Leeuwenhoek , 37: 489-496
doi: 10.1007/BF02218519
23 Vogel A I (1989). Vogel’s Textbook of Quantitive Chemical Analysis. 5th ed. London: London Group Ltd
24 Wang C, Ma S, Lu A (2006a). A preliminary study on the Cr(Ⅳ) removing from wastewater by precipitation of jarosite group minerals. Bulletin of Mineralogy, Petrology and Geochemistry , 25(4): 335-338 (in Chinese with English abstract)
25 Wang H, Bigham J M, Tuovinen O H (2006b). Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng , 26: 588-592
doi: 10.1016/j.msec.2005.04.009
26 Waychunas G A, Rea B A, Fulle C C, Davis J A (1993). Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta , 57: 2251-2269
doi: 10.1016/0016-7037(93)90567-G
27 Xu H, Yan W, Liu Z, Luo X, Wang Z (1995). Construction of antiarsenical vector and expression in Thiobacillus ferrooxidans. Chin J Appl Environ Biol , 1: 238-243 (in Chinese with English abstract)
[1] Xin WANG, Yan LI, Anhuai LU, Changqiu WANG, . Features of ferric sulfate precipitates formed by different cultivations of Acidithiobacillus ferrooxidans[J]. Front. Earth Sci., 2010, 4(2): 152-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed