Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 217-228    https://doi.org/10.1007/s11707-011-0157-2
RESEARCH ARTICLE
Habitat suitability of patch types: A case study of the Yosemite toad
Christina T. LIANG1,2(), Thomas J. STOHLGREN3
1. Department of Environmental Science and Policy, University of California at Davis, Davis, CA 95616, USA; 2. USDA Forest Service, Pacific Southwest Research Station, Sierra Nevada Research Center, 1731 Research Park Drive, Davis, CA 95618, USA; 3. U.S. Geological Survey Science, Fort Collins Science Center, Fort Collins, CO 80526, USA
 Download: PDF(698 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Understanding patch variability is crucial in understanding the spatial population structure of wildlife species, especially for rare or threatened species. We used a well-tested maximum entropy species distribution model (Maxent) to map the Yosemite toad (Anaxyrus (= Bufo) canorus) in the Sierra Nevada mountains of California. Twenty-six environmental variables were included in the model representing climate, topography, land cover type, and disturbance factors (e.g., distances to agricultural lands, fire perimeters, and timber harvest areas) throughout the historic range of the toad. We then took a novel approach to the study of spatially structured populations by applying the species-environmental matching model separately for 49 consistently occupied sites of the Yosemite toad compared to 27 intermittently occupied sites. We found that the distribution of the entire population was highly predictable (AUC= 0.95±0.03 SD), and associated with low slopes, specific vegetation types (wet meadow, alpine-dwarf shrub, montane chaparral, red fir, and subalpine conifer), and warm temperatures. The consistently occupied sites were also associated with these same factors, and they were also highly predictable (AUC= 0.95±0.05 SD). However, the intermittently occupied sites were associated with distance to fire perimeter, a slightly different response to vegetation types, distance to timber harvests, and a much broader set of aspect classes (AUC= 0.90±0.11 SD). We conclude that many studies of species distributions may benefit by modeling spatially structured populations separately. Modeling and monitoring consistently-occupied sites may provide a realistic snapshot of current species-environment relationships, important climatic and topographic patterns associated with species persistence patterns, and an understanding of the plasticity of the species to respond to varying climate regimes across its range. Meanwhile, modeling and monitoring of widely dispersing individuals and intermittently occupied sites may uncover environmental thresholds and human-related threats to population persistence.

Keywords species distribution models      Maxent      habitat patch      patchy populations      Yosemite toad      Anaxyrus canorus      Bufo canorus     
Corresponding Author(s): LIANG Christina T.,Email:christinaliang@fs.fed.us   
Issue Date: 05 June 2011
 Cite this article:   
Christina T. LIANG,Thomas J. STOHLGREN. Habitat suitability of patch types: A case study of the Yosemite toad[J]. Front Earth Sci, 0, (): 217-228.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-011-0157-2
https://academic.hep.com.cn/fesci/EN/Y0/V/I/217
Fig.1  Yosemite toad locations, classified into consistent and intermittent sites
Fig.2  Predicted potential geographic distribution for Yosemite toad: (a) all sites; (b) sites that are consistently occupied with relatively robust populations (consistent sites); and (c) sites that are intermittently occupied with few individuals when occupied (intermittent sites)
Fig.3  Variable response curves for the top six predictors in the Maxent model prediction for all Yosemite toad sites (consistent plus intermittent sites)
VariableContribution/%
All sitesConsistent sitesIntermittent sites
Slope35.835.5
Vegetation type13.415.020.9
Max Temp. warmest month10.513.7
Distance to fire perimeter9.941.8
Aspect8.69.27.8
Mean diurnal range8.45.0
Precip. coldest quarter8.5
Distance to timber harvest10.1
Tab.1  Relative contributions of predictor variables to the three predicted potential geographic distribution models (models using all sites, consistent sites only, and intermittent sites only) for Yosemite toad. Only variables that have greater than or equal to 5% contribution are included in the table
Fig.4  Variable response curves for the top six predictors in the Maxent model prediction for Yosemite toad sites that are consistently occupied with relatively robust populations (consistent sites)
Fig.5  Variable response curves for the top four predictors in the Maxent model prediction for Yosemite toad sites that are intermittently occupied with few individuals when occupied (intermittent sites)
Probability of occurrenceArea/ha
All SitesConsistent sitesIntermittent sites
0.9-1.0135514391395
0.8-0.9658060109762
0.7-0.8125641031217522
0.6-0.7173081466624738
0.5-0.6230642031532499
Sum608715274285916
Tab.2  Areas of predicted occurrence for Yosemite toad in the three geographic distribution models (all sites, consistent sites only, and intermittent sites only)
1 Alford R A, Richards S J (1999). Global amphibian declines: a problem in applied ecology. Annu Rev Ecol Syst , 30(1): 133–165
doi: 10.1146/annurev.ecolsys.30.1.133
2 Bradford D F, Neale A C, Nash M S, Sada D W, Jaeger J R (2003). Habitat patch occupancy by toads (Bufo punctatus) in a naturally fragmented desert landscape. Ecology , 84(4): 1012–1023
doi: 10.1890/0012-9658(2003)084[1012:HPOBTB]2.0.CO;2
3 Davidson C, Shaffer H B, Jennings M R (2002). Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines. Conserv Biol , 16(6): 1588–1601
doi: 10.1046/j.1523-1739.2002.01030.x
4 Drost C A, Fellers G M (1996). Collapse of a regional frog fauna in the Yosemite area of the California Sierra Nevada, USA. Conserv Biol , 10(2): 414–425
doi: 10.1046/j.1523-1739.1996.10020414.x
5 Elith J, Graham C H, Anderson R P, Dudik M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loiselle B A, Lohmann G, Manion G, Moritz C, Overton J M, Peterson A T, Phillips S J, Nakamura M, Nakazawa Y, Schapire R E, Wisz M S, Zimmermann N E (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography , 29: 129–151
doi: 10.1111/j.2006.0906-7590.04596.x
6 Evangelista P H, Kumar S, Stohlgren T J, Jarnevich C S, Crall A W, Norman J B III, Barnett D T (2008). Modelling invasion for a habitat generalist and a specialist plant species. Divers Distrib , 14(5): 808–817
doi: 10.1111/j.1472-4642.2008.00486.x
7 Ficetola G F, Thuiller W, Miaud C (2007). Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib , 13(4): 476–485
doi: 10.1111/j.1472-4642.2007.00377.x
8 Frankham R, Ballou J D, Briscoe D A (2002). Introduction to conservation genetics. Cambridge University Press, Cambridge
9 Fuller T, Morton D P, Sarkar S (2008). Incorporating uncertainty about species’ potential distributions under climate change into the selection of conservation areas with a case study from the Arctic Coastal Plain of Alaska. Biol Conserv , 141(6): 1547–1559
doi: 10.1016/j.biocon.2008.03.021
10 Funk W C, Greene A E, Corn P S, Allendorf F W (2005). High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Lett , 1(1): 13–16
doi: 10.1098/rsbl.2004.0270 pmid:17148116
11 Giovanelli J G R, Haddad C F B, Alexandrino J (2008). Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol Invasions , 10(5): 585–590
doi: 10.1007/s10530-007-9154-5
12 Hanski I (1999). Metapopulation Ecology. New York: Oxford University Press
13 Harrison S, Taylor A D (1997). Empirical evidence for metapopulation dynamics. In: Hanski I, Gilpin M E, eds. Metapopulation Dynamics: Ecology, Genetics and Evolution . New York: Academic Press, 27–42
14 Heisswolf A, Reichmann S, Poethke H J, Schrader B, Obermaier E (2009). Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape. J Insect Conserv , 13(2): 165–175
doi: 10.1007/s10841-008-9139-4
15 Jarnevich C S, Stohlgren T J (2009). Near term climate projections for invasive species distributions. Biol Invasions , 11(6): 1373–1379
doi: 10.1007/s10530-008-9345-8
16 Karlstrom E L (1962). The toad genus Bufo in the Sierra Nevada of California. Univ Calif Publ Zool , 62: 1–104
17 Kokko H, López-Sepulcre A (2006). From individual dispersal to species ranges: perspectives for a changing world. Science , 313(5788): 789–791
doi: 10.1126/science.1128566 pmid:16902127
18 Kumar S, Spaulding S A, Stohlgren T J, Hermann K A, Schmidt T S, Bahls L L (2009). Predicting habitat distribution for freshwater diatom Didymosphenia geminata in the continental United States. Front Ecol Environ , 7: 415–420
doi: 10.1890/080054
19 Levins R A (1969). Some demographic and evolutionary consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am , 15: 237–240
20 Li M Y, Ju Y W, Kumar S, Stohlgren T J (2008). Modeling potential habitats for alien species Dreissena polymorpha (Zebra mussel) in the Continental USA. Acta Ecol Sin , 28(9): 4253–4258
doi: 10.1016/S1872-2032(08)60080-3
21 Lloyd H (2008). Influence of within-patch habitat quality on high- Andean Polylepis bird abundance. Ibis , 150(4): 735–745
doi: 10.1111/j.1474-919X.2008.00843.x
22 Marsh D M, Trenham P C (2001). Metapopulation dynamics and amphibian conservation. Conserv Biol , 15: 40–49
23 Mortelliti A, Amori G, Boitani L (2010). The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia , 163(2): 535–547
doi: 10.1007/s00442-010-1623-3 pmid:20414787
24 Pawar S, Koo M S, Kelley C, Ahmed M F, Chaudhuri S, Sarkar S (2007). Conservation assessment and prioritization of areas in Northeast India: Priorities for amphibians and reptiles. Biol Conserv , 136(3): 346–361
doi: 10.1016/j.biocon.2006.12.012
25 Pearson R G, Raxworthy C J, Nakamura M, Peterson A T (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J Biogeogr , 34(1): 102–117
doi: 10.1111/j.1365-2699.2006.01594.x
26 Petranka J W, Holbrook C T (2006). Wetland restoration for amphibians: should local sites be designed to support metapopulations or patchy populations? Restor Ecol , 14(3): 404–411
doi: 10.1111/j.1526-100X.2006.00148.x
27 Phillips B L, Brown G P, Webb J K, Shine R (2006a). Invasion and the evolution of speed in toads. Nature , 439(7078): 803
doi: 10.1038/439803a pmid:16482148
28 Phillips S J, Dudik M, Schapire R E (2004). A maximum entropy approach to species distribution modeling.Brodley C E, ed. In: Proceedings of the 21st International Conference on Machine Learning . New York::ACM Press, 655–662
29 Phillips S J, Anderson R P, Schapire R E (2006b). Maximum entropy modeling of species geographic distributions. Ecol Modell , 190(3-4): 231–259
doi: 10.1016/j.ecolmodel.2005.03.026
30 Pilliod D S, Bury R B, Hyde E J, Pearl C A, Corn P S (2003). Fire and amphibians in North America. For Ecol Manage , 178(1-2): 163–181
doi: 10.1016/S0378-1127(03)00060-4
31 Pulliam H R (1988). Sources, sinks, and population regulation. Am Nat , 132(5): 652–661
doi: 10.1086/284880
32 Riley S P D, Busteed G T, Kats L B, Vandergon T L, Lee L F S, Dagit R G, Kerby J L, Fisher R N, Sauvajot R M (2005). Effects of urbanization on the distribution and abundance of amphibians and invasive species in Southern California streams. Conserv Biol , 19(6): 1894–1907
doi: 10.1111/j.1523-1739.2005.00295.x
33 Schooley R L, Branch L C (2009). Enhancing the area-isolation paradigm: habitat heterogeneity and metapopulation dynamics of a rare wetland mammal. Ecol Appl , 19(7): 1708–1722
doi: 10.1890/08-2169.1 pmid:19831065
34 Semlitsch R D, Todd B D, Blomquist S M, Calhoun A J K, Gibbons J W, Gibbs J P, Graeter G J, Harper E B, Hocking D J, Hunter M L Jr, Patrick D A, Rittenhouse T A G, Rothermel B B (2009). Effects of timber harvest on amphibian population: Understanding mechanisms from forest experiments. Bioscience , 59(10): 853–862
doi: 10.1525/bio.2009.59.10.7
35 Sherman C K, Morton M L (1993). Population declines of Yosemite toads in the eastern Sierra Nevada of California. J Herpetol , 27(2): 186–198
doi: 10.2307/1564935
36 Smith M A, Green D M (2005). Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations? Ecography , 28: 110–128
doi: 10.1111/j.0906-7590.2005.04042.x
37 Svenning J C, Normand S, Kageyama M (2008). Glacial refugia of temperate trees in Europe: Insights from species distribution modelling. J Ecol , 96(6): 1117–1127
doi: 10.1111/j.1365-2745.2008.01422.x
38 U.S. Fish and Wildlife Service (USFWS) (2002). 12-month finding for a petition to list the Yosemite toad. Federal Register , 67: 75834–75843
39 Waltari E, Guralnick R P (2009). Ecological niche modelling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. J Biogeogr , 36(1): 148–161
doi: 10.1111/j.1365-2699.2008.01959.x
[1] Shuyan LIU, Xin-Zhong LIANG, Wei GAO, Thomas J. STOHLGREN. Regional climate model downscaling may improve the prediction of alien plant species distributions[J]. Front. Earth Sci., 2014, 8(4): 457-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed