Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (2) : 302-308    https://doi.org/10.1007/s11707-013-0398-3
RESEARCH ARTICLE
Climate change implications of soil temperature in the Mojave Desert, USA
Yanying BAI1,2, Thomas A. SCOTT2, Qingwen MIN1()
1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. Department of Earth Sciences, University of California Riverside, California 92521, USA
 Download: PDF(307 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Soil temperature plays an important role in physical, biological, and microbiological processes occurring in the soil, but it is rarely reported as an indicator of climate change. A long-term soil temperature database, collected in the Mojave Desert region from 1982–2000, was used to examine the relationship between regional climate change and soil temperature. During this 19-year study period, there was a warming trend in the Mojave Desert region. The soil temperature in this region, measured at 50-cm deep, increased at an average rate of 0.79°C per decade. The temporal changes of soil temperature and those of air temperature were highly correlated. Elevation was the dominating factor that affected the spatiotemporal variations of soil and air temperature.

Keywords annual mean soil temperature      annual mean air temperature      arid environment      climate change      El Niño–Southern Oscillation      elevation     
Corresponding Author(s): Qingwen MIN   
Issue Date: 24 June 2014
 Cite this article:   
Yanying BAI,Thomas A. SCOTT,Qingwen MIN. Climate change implications of soil temperature in the Mojave Desert, USA[J]. Front. Earth Sci., 2014, 8(2): 302-308.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0398-3
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I2/302
1 R Allan (2000). ENSO and climatic variability in the past 150  years. In: V Markgraf, H Diaz, eds. El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts. New York: Cambridge University Press, 3−35
2 Y Y Bai, T A Scott, W P Chen, A C Chang (2010b). Evaluating methods for measuring the mean soil temperature. Geoderma, 157(3−4): 222−227
https://doi.org/10.1016/j.geoderma.2010.04.021
3 Y Y Bai, T A Scott, W P Chen, R C Graham, A C Chang, L J Lund (2010a). Soil temperature regimes in the Mojave Desert. Soil Sci, 175(8): 398−404
https://doi.org/10.1097/SS.0b013e3181eb66ee
4 Y Y Bai, T A Scott, W P Chen, R A Minnich, R C Graham, A C Chang, L J Lund (2011). Long-term variation in soil temperature of the Mojave Desert, southwestern USA. Clim Res, 46(1): 43−50
https://doi.org/10.3354/cr00970
5 J E Bowers (2005). El Nino and displays of spring-flowering annuals in the Mojave and Sonoran deserts. J Torrey Bot Soc, 132(1): 38−49
https://doi.org/10.3159/1095-5674(2005)132[38:ENADOS]2.0.CO;2
6 P D Brooks, D McKnight, K Elder (2005). Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Change Biol, 11(2): 231−238
https://doi.org/10.1111/j.1365-2486.2004.00877.x
7 D R Cayan, K T Redmond, L G Riddle (1999). ENSO and hydrologic extremes in the western United States. J Clim, 12(9): 2881−2893
https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2
8 V Čermák, L Bodri, J Šafanda (1992). Underground temperature fields and changing climate: evident from Cuba. Global Planet Change, 5(4): 325−337
https://doi.org/10.1016/0921-8181(92)90003-S
9 S A Changnon (1999). A rare long record of deep soil temperatures defines temporal temperature changes and an urban heat island. Clim Change, 42(3): 531−538
https://doi.org/10.1023/A:1005453217967
10 A Donnelly, M B Jones, J Sweeney (2004). A review of indicators of climate change for use in Ireland. Int J Biometeorol, 49(1): 1−12
https://doi.org/10.1007/s00484-004-0215-5 pmid: 15278685
11 J Hansen, M Sato, R Ruedy, K Lo, D W Lea, M Medina-Elizade (2006). Global temperature change. Proc Natl Acad Sci USA, 103(39): 14288−14293
https://doi.org/10.1073/pnas.0606291103 pmid: 17001018
12 D Houle, A Bouffard, L Duchesne, T Logan, R Harvey (2012). Projections of future soil temperature and water content for three southern Quebec forested sites. J Climate, 25: 7690−7701
https://doi.org/http://dx.doi.org/10.1175/JCLI-D-11-00440.1
13 Q Hu, S Feng (2003). A daily soil temperature dataset and soil temperature climatology of the contiguous United States. J Appl Meteorol, 42(8): 1139−1156
https://doi.org/10.1175/1520-0450(2003)042<1139:ADSTDA>2.0.CO;2
14 S Kang, S Kim, S Oh, D Lee (2000). Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For Ecol Manage, 136(1−3): 173−184
https://doi.org/10.1016/S0378-1127(99)00290-X
15 J D Lin (1980). On the force-restore method for prediction of ground surface temperature. J Geophys Res, 85(C6): 3251−3254
https://doi.org/10.1029/JC085iC06p03251
16 S Moustafa, D Jarrar, H Elmansy, H Al-Shami, G Brusewitz (1981). Arid soil-temperature model. Sol Energy, 27(1): 83−88
https://doi.org/10.1016/0038-092X(81)90026-8
17 C D Peters-Lidard, E Blackburn, X Liang, E F Wood (1998). The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci, 55(7): 1209−1224
https://doi.org/10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2
18 R W Portmann, S Solomon, G C Hegerl (2009). Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc Natl Acad Sci U S A, 106(18): 7324−7329
pmid: 19380730
19 B Qian, E G Gregorich, S Gameda, D W Hopkins, X L Wang (2011). Observed soil temperature trends associated with climate change in Canada. J Geophys Res, 116(D2): D02106
https://doi.org/10.1029/2010JD015012
20 J P Schimel, C Bilbrough, J A Welker (2004). Increased snow depth affects icrobialactivity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem, 36(2): 217−227
https://doi.org/10.1016/j.soilbio.2003.09.008
21 W L Schmidt, W D Gosnold, J W Enz (2001). A decade air-ground temperature exchange from Fargo, North Dakota. Global Planet Change, 29(3−4): 311−325
https://doi.org/10.1016/S0921-8181(01)00097-2
22 J Seinfeld (2008). Climate change. Reviews in Chemical Engineering, 24(1): 1−65
https://doi.org/10.1515/REVCE.2008.24.1.1
23 M S Seyfried, G N Flerchinger, M D Murdock, C L Hanson, S Van Vactor (2001). Long-term soil temperature database, Reynolds Creek Experimental Watershed, Idaho, United States. Water Resour Res, 37(11): 2843−2846
https://doi.org/10.1029/2001WR000418
24 G R Walther, E Post, P Convey, A Menzel, C Parmesan, T J C Beebee, J M Fromentin, O Hoegh-Guldberg, F Bairlein (2002). Ecological responses to recent climate change. Nature, 416(6879): 389−395
https://doi.org/10.1038/416389a pmid: 11919621
25 P J Williams, M W Smith (1989). The Frozen Earth: Fundamentals of Geocryology. Cambridge University Press, Cambridge.
26 T Zhang, R G Barry, D Gilichinsky, S S Bykhovets, V A Sorokovikov, J P Ye (2001). An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Clim Change, 49(1/2): 41−76
https://doi.org/10.1023/A:1010790203146
27 Y Zhang, W Chen, S L Smith, D W Riseborough, J Cihlar (2005). Soil temperature in Canada during the twentieth century: complex responses to atmospheric climate change. J Geophys Res, 110(D3): D03112
https://doi.org/10.1029/2004JD004910
28 D Zheng, E R Hunt Jr, S W Running (1993). A daily soil temperature model based on air temperature and precipitation for continental applications. Clim Res, 2: 183−191
https://doi.org/10.3354/cr002183
[1] Ziyang DAI, Fayuan LI, Mingwei ZHAO, Lanhua LUO, Haoyang JIAO. Extraction of lacunarity variation index for revealing the slope pattern in the Loess Plateau of China[J]. Front. Earth Sci., 2021, 15(1): 94-105.
[2] Xiaocha WEI, Qiuwen ZHOU, Ya LUO, Mingyong CAI, Xu ZHOU, Weihong YAN, Dawei PENG, Ji ZHANG. Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China[J]. Front. Earth Sci., 2021, 15(1): 167-183.
[3] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[4] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[5] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[6] Guowei PANG, Qinke YANG, Chunmei WANG, Rui LI, Lu ZHANG. Quantitative assessment of the influence of terrace and check dam construction on watershed topography[J]. Front. Earth Sci., 2020, 14(2): 360-375.
[7] Bartłomiej SZYPUŁA, Małgorzata WIECZOREK. Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland[J]. Front. Earth Sci., 2020, 14(1): 152-170.
[8] Nan CHEN. Scale problem: Influence of grid spacing of digital elevation model on computed slope and shielded extra-terrestrial solar radiation[J]. Front. Earth Sci., 2020, 14(1): 171-187.
[9] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[10] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[11] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[12] Molly E. TEDESCHE, Steven R. FASSNACHT, Paul J. MEIMAN. Scales of snow depth variability in high elevation rangeland sagebrush[J]. Front. Earth Sci., 2017, 11(3): 469-481.
[13] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[14] Xin JIA, Shuangwen YI, Yonggang SUN, Shuangye WU, Harry F. LEE, Lin WANG, Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[15] Le Wang, Shenglian Guo, Xingjun Hong, Dedi Liu, Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed