Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (1) : 13-25    https://doi.org/10.1007/s11707-014-0464-5
RESEARCH ARTICLE
Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils
Huan YANG1, Wenjie XIAO1, Chengling JIA2, Shucheng XIE1()
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
 Download: PDF(685 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The MBT/CBT (Methylation Index of Branched Tetraethers/Cyclisation ratio of Branched Tetraether) proxy, a terrestrial paleothermometer based on bacterial branched glycerol dialkyl glycerol tetraethers (bGDGTs), was employed to indicate altimetry; however, the mechanistic control on this proxy is still ambiguous. Here, we investigated the bGDGTs’ distribution and associated environmental factors along an altitude transect of Mt. Shennongjia in China in order to determine the applicability of bGDGT-based proxies to altimetry reconstruction. The MBT index exhibits only a weak correlation with estimated mean annual air temperature (MATe, estimated according to the meteorological record and lapse rate) or altitude. Likewise, MBT shows weak or no relationship with temperature or altitude at four other mountains (Mts. Meghalaya, Jianfengling, Gongga, and Rungwe). It is notable that mean annual air temperature (MAT) or altitude estimated by the MBT/CBT proxy largely relies on CBT, rather than on MBT, which was generally acknowledged. The poor relationship between MBT and MATe for Mt. Shennongjia can be ascribed to the insensitive response of bGDGT-I to temperature. Our data from this mountain imply that care should be taken if the MBT/CBT proxy is employed as an indication of paleoaltimetry. We propose that the fractional abundance of bGDGTs may be a better paleoaltimeter than the MBT/CBT proxy, because specific bGDGT subsets that might show the most sensitive response to temperature can be preferentially selected using a statistical method and used to establish local calibration. This local calibration was applied to Mt. Shennongjia and apparently improves the accuracy of temperature and altimetry reconstruction. The differential response of bGDGTs to temperature among mountains suggests that local calibrations are needed to better constrain the altimetry.

Keywords branched glycerol dialkyl glycerol tetraethers      soil pH      paleoaltimetry      temperatures     
Corresponding Author(s): Shucheng XIE   
Issue Date: 01 January 2023
 Cite this article:   
Huan YANG,Wenjie XIAO,Chengling JIA, et al. Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils[J]. Front. Earth Sci., 2015, 9(1): 13-25.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0464-5
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I1/13
1 V J Anderson, T M Shanahan, J E Saylor, B K Horton, A R Mora (2014). Sources of local and regional variability in the MBT’/CBT paleotemperature proxy: insights from a modern elevation transect across the Eastern Cordillera of Colombia. Org Geochem, 69: 42–51
https://doi.org/10.1016/j.orggeochem.2014.01.022
2 S Coffinet, A Huguet, D Williamson, C Fosse, S Derenne (2014). Potential of GDGTs as a temperature proxy along an altitudinal transect at Mount Rungwe (Tanzania). Org Geochem, 68: 82–89
https://doi.org/10.1016/j.orggeochem.2014.01.004
3 S S Dirghangi, M Pagani, M T Hren, B J Tipple (2013). Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA. Org Geochem, 59: 49–60
https://doi.org/10.1016/j.orggeochem.2013.03.009
4 N Ernst, F Peterse, S F M Breitenbach, H J Syiemlieh, T I Eglinton (2013). Biomarkers record environmental changes along an altitudinal transect in the wettest place on Earth. Org Geochem, 60: 93–99
https://doi.org/10.1016/j.orggeochem.2013.05.004
5 P Ghosh, C N Garzione, J M Eiler (2006). Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311(5760): 511–515
https://doi.org/10.1126/science.1119365
6 M T Hren, M Pagani, D M Erwin, M Brandon (2010). Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada. Geology, 38(1): 7–10
https://doi.org/10.1130/G30215.1
7 C Huguet, E C Hopmans, W Febo-Ayala, D H Thompson, J S Sinninghe Damsté, S Schouten (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041
https://doi.org/10.1016/j.orggeochem.2006.05.008
8 G Jia, K Wei, F Chen, P A Peng (2008). Soil n-alkane δD vs. altitude gradients along Mount Gongga, China. Geochim Cosmochim Acta, 72(21): 5165–5174
https://doi.org/10.1016/j.gca.2008.08.004
9 W Liu, H Wang, C L Zhang, Z Liu, Y He (2013). Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China. Org Geochem, 57: 76–83
https://doi.org/10.1016/j.orggeochem.2013.01.011
10 S E Loomis, J M Russell, J S Sinninghe Damsté (2011). Distributions of branched GDGTs in soils and lake sediments from western Uganda: implications for a lacustrine paleothermometer. Org Geochem, 42(7): 739–751
https://doi.org/10.1016/j.orggeochem.2011.06.004
11 P Luo, P A Peng, G Gleixner, Z Zheng, Z Pang, Z Ding (2011). Empirical relationship between leaf wax n-alkane δD and altitude in the Wuyi, Shennongjia and Tianshan Mountains, China: implications for paleoaltimetry. Earth Planet Sci Lett, 301(1–2): 285–296
https://doi.org/10.1016/j.epsl.2010.11.012
12 A Mulch, S A Graham, C P Chamberlain (2006). Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada. Science, 313(5783): 87–89
https://doi.org/10.1126/science.1125986
13 A Mulch, C Teyssier, M A Cosca, O Vanderhaeghe, T W Vennemann (2004). Reconstructing paleoelevation in eroded orogens. Geology, 32(6): 525–528
https://doi.org/10.1130/G20394.1
14 F Peterse, J van der Meer, S Schouten, J W H Weijers, N Fierer, R B Jackson, J H Kim, J S Sinninghe Damsté (2012). Revised calibration of the MBT−CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96: 215–229
https://doi.org/10.1016/j.gca.2012.08.011
15 F Peterse, M T J van der Meer, S Schouten, G Jia, J Ossebaar, J Blokker, J S Sinninghe Damsté (2009). Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. Biogeosciences, 6(12): 2799–2807
https://doi.org/10.5194/bg-6-2799-2009
16 P J Polissar, K H Freeman, D B Rowley, F A McInerney, B S Currie (2009). Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers. Earth Planet Sci Lett, 287(1–2): 64–76
https://doi.org/10.1016/j.epsl.2009.07.037
17 D B Rowley, C N Garzione (2007). Stable isotope-based paleoaltimetry. Annu Rev Earth Planet Sci, 35(1): 463–508
https://doi.org/10.1146/annurev.earth.35.031306.140155
18 W F Ruddiman, J E Kutzbach (1989). Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west. J Geophys Res Atmos, 94(D15): 18409–18427
https://doi.org/10.1029/JD094iD15p18409
19 S Schouten, E C Hopmans, E Schefuß, J S Sinninghe Damsté (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett, 204(1–2): 265–274
https://doi.org/10.1016/S0012-821X(02)00979-2
20 J S Sinninghe Damsté, E Hopmans, R D Pancost, S Schouten, J A J Geenevasen (2000). Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chem Commun (Camb), 2000(17): 1683–1684
https://doi.org/10.1039/b004517i
21 J S Sinninghe Damsté, J Ossebaar, S Schouten, D Verschuren (2008). Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): implications for the MBT/CBT continental palaeothermometer. Org Geochem, 39(8): 1072–1076
https://doi.org/10.1016/j.orggeochem.2007.11.011
22 Q Sun, G Chu, M Liu, M Xie, S Li, Y Ling, X Wang, L Shi, G Jia, H Y Lu (2011). Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal. J Geophys Res, 116(G1): G01008
23 C J F ter Braak (1988). Canoco-a FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Technical Rep. LWA-88-02, GLW, Wageningen, 95
24 C J F ter Braak, I C Prentice (1988). A theory of gradient analysis. Adv Ecol Res, 18: 271–317
https://doi.org/10.1016/S0065-2504(08)60183-X
25 C J F ter Braak, P Smilauer (2002). CANOCO reference manual and Canodraw for Windows Users Guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA. 500
26 J E Tierney, J M Russell, H Eggermont, E C Hopmans, D Verschuren, J S Sinninghe Damsté (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim Cosmochim Acta, 74(17): 4902–4918
https://doi.org/10.1016/j.gca.2010.06.002
27 J W H Weijers, S Schouten, O C Spaargaren, J S Sinninghe Damsté (2006). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37(12): 1680–1693
https://doi.org/10.1016/j.orggeochem.2006.07.018
28 J W H Weijers, S Schouten, J C van den Donker, E C Hopmans, J S Sinninghe Damsté (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71(3): 703–713
https://doi.org/10.1016/j.gca.2006.10.003
29 J W H Weijers, P Steinmann, E C Hopmans, S Schouten, J S Sinninghe Damsté (2011). Bacterial tetraether membrane lipids in peat and coal: testing the MBT/CBT temperature proxy for climate reconstruction. Org Geochem, 42(5): 477–486
https://doi.org/10.1016/j.orggeochem.2011.03.013
30 J W H Weijers, G L B Wiesenberg, R Bol, E C Hopmans, R D Pancost (2010). Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s). Biogeosciences, 7(9): 2959–2973
https://doi.org/10.5194/bg-7-2959-2010
31 H Yang, W Ding, G He, S Xie (2010). Archaeal and bacterial tetraether membrane lipids in soils of varied altitudes in Mt. Jianfengling in South China. J Earth Sci, 21(S1): 277–280
https://doi.org/10.1007/s12583-010-0235-5
32 H Yang, W Ding, J Wang, C Jin, G He, Y Qin, S Xie (2012). Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China. Science China Earth Sciences, 55(2): 236–245
https://doi.org/10.1007/s11430-011-4295-x
33 H Yang, W Ding, C L Zhang, X Wu, X Ma, G He, J Huang, S Xie (2011). Occurrence of tetraether lipids in stalagmites: implications for sources and GDGT-based proxies. Org Geochem, 42(1): 108–115
https://doi.org/10.1016/j.orggeochem.2010.11.006
34 H Yang, R D Pancost, X Dang, X Zhou, R P Evershed, G Xiao, C Tang, L Gao, Z Guo, S Xie (2014). Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69
https://doi.org/10.1016/j.gca.2013.10.041
35 C Zhu, X Chen, G Zhang, C Ma, Q Zhu, Z Li, W Xu (2008). Spore-pollen-climate factor transfer function and paleoenvironment reconstruction in Dajiuhu, Shennongjia, Central China. Chin Sci Bull, 53(S1): 42–49
https://doi.org/10.1007/s11434-008-5011-x
[1] Asma AYARI, Huan YANG, Shucheng XIE. Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China[J]. Front Earth Sci, 2013, 7(3): 384-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed