Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (4) : 634-643    https://doi.org/10.1007/s11707-015-0546-z
RESEARCH ARTICLE
Black carbon record of the wildfire history of western Sichuan Province in China over the last 12.8 ka
Weiwei SUN1,2,Enlou ZHANG1(),Ji SHEN1,Rong CHEN1,Enfeng LIU1
1. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1543 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Wildfire is recognized as a critical Earth system process which affects the global carbon cycle, atmospheric chemistry, and ecosystem dynamics. Estimating the potential impact of future climate change on the incidence of fire requires an understanding of the long-term interactions of fire, climate, vegetation, and human activity. Accordingly, we analyzed the black carbon content and the pollen stratigraphy of sediments spanning the past 12.8 ka from Lake Muge Co, an alpine lake in western Sichuan Province, in order to determine the main factors influencing regional fire regimes. The results demonstrate that wildfires occurred frequently and intensively during the late deglaciation and the early Holocene when the regional vegetation was dominated by deciduous forests. Wildfire occurrence decreased significantly during the Holocene climatic optimum between 9.2 and 5.6 cal ka BP. Overall, the wildfire history of western Sichuan Province is similar to that of the Chinese Loess Plateau and of East Asia as a whole, suggesting that regional-scale fires depended mainly on changes in the intensity of the Asian summer monsoon. In addition, the fire regime of western Sichuan Province may have been influenced by the establishment of human settlement and agriculture in western Sichuan Province and the southeastern Tibetan Plateau after about 5.5 cal ka BP, and by an intensification of cereal cultivation coupled with population expansion in southwestern China during the last two millennia.

Keywords black carbon      wildfire      summer monsoon      human activity      Holocene      Lake Muge Co     
Corresponding Author(s): Enlou ZHANG   
Just Accepted Date: 04 December 2015   Online First Date: 04 January 2016    Issue Date: 04 November 2016
 Cite this article:   
Weiwei SUN,Enlou ZHANG,Ji SHEN, et al. Black carbon record of the wildfire history of western Sichuan Province in China over the last 12.8 ka[J]. Front. Earth Sci., 2016, 10(4): 634-643.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0546-z
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I4/634
Fig.1  (a) Location of Muge Co (triangle) and of paleoclimatic and archaeological sites mentioned in the text (circles): 1, Nam Co (Schütt et al., 2010); 2, Zigetang Co (Wu et al., 2007); 3, Chen Co (Zhu et al., 2009); 4, Puru Co (Bird et al., 2014); 5, Site Changdu Karuo (d’Alpoim Guedes, 2013); 6, Lake Qinghai (Shen et al., 2005); 7, Lake Luanhaizi (Herzschuh et al., 2006); 8, Site Yingpanshan (d’Alpoim Guedes, 2013); 9, Hongyuan peat bog (Hong et al., 2003); 10, Jiuzhaigou (Henck et al., 2010); 11, Site Baodun (d’Alpoim Guedes, 2011; d’Alpoim Guedes et al., 2013); 12, Lake Shayema (Jarvis, 1993); 13, Lake Erhai (Shen et al., 2006); 14, Lake Xingyun (Chen et al., 2014a; Wu et al., 2014); 15, Dongge Cave (Dykoski et al., 2005); 16, Site Liangjiayao (Tan et al., 2013). (b) Bathymetry of Muge Co and location of the coring site (triangle).
Lab number Sample depth/cm Dated material Conventional 14C age/(yr BP±1s) d13C/‰ 2 scalibrated age/(cal yr BP) (median probability)
Beta-306661 49.5 Bulk sediment 1760±30 ?26.4 1568?1776 (1664)
Beta-306662 99.5 Bulk sediment 2400±30 ?23.2 2348?2679 (2421)
Beta-308445 149.5 Bulk sediment 4170±30 ?25.8 4584?4831 (4715)
Beta-306663 201.5 Bulk sediment 6140±30 ?27.2 6951?7157( 7049)
Beta-308446 249.5 Bulk sediment 7990±40 ?25.9 8662?9005 (8868)
OX-2468-28 295.5 Pollen extract 8840±120 ?25.7 9562?10198 (9910)
Beta-308447 330.5 Bulk sediment 9130±40 ?24.2 10223?10405 (10275)
Beta-306664 372.5 Bulk sediment 10690±40 ?22.8 12576?12715 (12661)
Tab.1  AMS radiocarbon dates of organic materials from Muge Co. All of the AMS 14C dates are calibrated to calendar years before present using the IntCal13 calibration dataset (Reimer et al., 2013)
Fig.2  Chronological model and stratigraphic variation of various proxy records from the Muge Co sediment core. (a) Lithology and age-depth model based on calibrated AMS 14C dates (the disturbed layer was not included in the record- see text for further information); (b) sedimentation rate; (c) BC content (black line) and five-points running average (red line); and (d) pollen percentages of deciduous broad-leaved trees, evergreen broad-leaved trees, and coniferous trees.
Fig.3  Comparison of the BC and pollen records from the Muge Co sediments with other records during the last 13 ka: (a) BC record (black dotted line) and five-point running average (black line) from Muge Co (this study); (b) micro-charcoal influx at the site of Liangjiayao (Tan et al., 2013); (c) the East Asian average anomalies for the Z scores of charcoal values (Power et al., 2008); (d) speleothem d18O record from Dongge Cave in southern China (Dykoski et al., 2005); (e) deciduous broad-leaved tree pollen percentages from Muge Co (this study); (f) estimated changes in the cultivated area in China during the Holocene (Klein Goldewijk et al., 2011).
1 Aldenderfer M S (2007). Modeling the Neolithic on the Tibetan Plateau. In: Madsen D B, Chen F, Gao X, eds. Developments in Quaternary Sciences. Amsterdam: Elsevier, 151–165
2 Berna F, Goldberg P, Horwitz L K, Brink J, Holt S, Bamford M, Chazan M (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc Natl Acad Sci USA, 109(20): E1215–E1220
https://doi.org/10.1073/pnas.1117620109
3 Bird B W, Polisar P J, Lei Y, Thompson L G, Yao T, Finney B P, Bain D J, Pompeani D P, Steinman B A (2014). A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth Planet Sci Lett, 399: 92–102
https://doi.org/10.1016/j.epsl.2014.05.017
4 Bird M I, Gröcke D R (1997). Determination of the abundance and carbon isotope composition of elemental carbon in sediments. Geochim Cosmochim Acta, 61(16): 3413–3423
https://doi.org/10.1016/S0016-7037(97)00157-9
5 Bowman D M J S, Balch J, Artaxo P, Bond W J, Cochrane M A, D’Antonio C M, DeFries R, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Mack M, Moritz M A, Pyne S, Roos C I, Scott A C, Sodhi N S, Swetnam T W (2011). The human dimension of fire regimes on Earth. J Biogeogr, 38(12): 2223–2236
https://doi.org/10.1111/j.1365-2699.2011.02595.x
6 Bowman D M J S, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D’Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, van der Werf G R, Pyne S J (2009). Fire in the earth system. Science, 324(5926): 481–484
https://doi.org/10.1126/science.1163886
7 Chen F, Chen X, Chen J, Zhou A, Wu D, Tang L, Zhang X, Huang X, Yu J (2014a). Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China. J Quaternary Sci, 29(7): 661–674
https://doi.org/10.1002/jqs.2735
8 Chen F, Niu S, Tong X, Zhao J, Sun Y, He T (2014b).The impact of precipitation regimes on forest fires in Yunnan Province, Southwest China.Scientific World Journal
https://doi.org/10.1155/2014/326782
9 Chen J, Li C, He G (2007). A diagnostic analysis of the impact of complex terrain in the eastern Tibetan Plateau, China, on a severe storm. Arct Antarct Alp Res, 39(4): 699–707
https://doi.org/10.1657/1523-0430(07-500)[CHEN]2.0.CO;2
10 Conedera M, Tinner W, Neff C, Meurer M, Dickens A F, Krebs P (2009). Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev, 28(5‒6): 555–576
https://doi.org/10.1016/j.quascirev.2008.11.005
11 d’Alpoim Guedes J (2011). Millets, rice, social complexity, and the spread of agriculture to the Chengdu Plain and Southwest China. Rice (N Y), 4(3‒4): 104–113
https://doi.org/10.1007/s12284-011-9071-1
12 d’Alpoim Guedes J (2013). Adaptation and Invention during the Spread of Agriculture to Southwest China. Dissertation for PhD degree. Harvard University, Cambridge, Massachusetts
13 d’Alpoim Guedes J, Jiang M, He K, Wu X, Jiang Z (2013). Site of Baodun yields earliest evidence for the spread of rice and foxtail millet agriculture to south-west China. Antiquity, 87(337): 758–771
https://doi.org/doi:10.1017/S0003598X00049449
14 Dearing J A, Jones R T, Shen J, Yang X, Boyle J F, Foster G C, Crook D S, Elvin M J D (2008). Using multiple archives to understand past and present climate–human–environment interactions: the lake Erhai catchment, Yunnan Province, China. J Paleolimnol, 40(1): 3–31
https://doi.org/10.1007/s10933-007-9182-2
15 Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233(1‒2): 71–86
https://doi.org/10.1016/j.epsl.2005.01.036
16 Elvin M, Crook D, Ji S, Jones R, Dearing J (2002). The impact of clearance and irrigation on the environment in the Lake Erhai catchment from the ninth to the nineteenth century. East Asian Studies, 23: 1–60
17 Fægri K, Kaland P E, Krzywinski K (1989). Textbook of Pollen Analysis, 4th ed. Chichester: John Wiley& Sons
18 Flannigan M, Stocks B, Turetsky M, Wotton M (2009). Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob Change Biol, 15(3): 549–560
https://doi.org/10.1111/j.1365-2486.2008.01660.x
19 Fuller D Q, Qin L (2009). Water management and labour in the origins and dispersal of Asian rice. World Archaeol, 41(1): 88–111
https://doi.org/10.1080/00438240802668321
20 Henck A, Taylor J, Lu H, Li Y, Yang Q, Grub B, Breslow S J, Robbins A, Elliott A, Hinckley T, Combs J, Urgenson L, Widder S, Hu X, Ma Z, Yuan Y, Jian D, Liao X, Tang Y (2010). Anthropogenic hillslope terraces and swidden agriculture in Jiuzhaigou National Park, northern Sichuan, China. Quat Res, 73(2): 201–207
https://doi.org/10.1016/j.yqres.2009.10.001
21 Herzschuh U, Kürschner H, Mischke S (2006). Temperature variability and vertical vegetation belt shifts during the last ~50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quat Res, 66(1): 133–146
https://doi.org/10.1016/j.yqres.2006.03.001
22 Higuera P E, Brubaker L B, Anderson P M, Hu F S, Brown T A (2009). Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr, 79(2): 201–219
https://doi.org/10.1890/07-2019.1
23 Hong Y T, Hong B, Lin Q H, Zhu Y X, Shibata Y, Hirota M, Uchida M, Leng X T, Jiang H B, Xu H, Wang H, Yi L (2003). Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett, 211(3‒4): 371–380
https://doi.org/10.1016/S0012-821X(03)00207-3
24 Hou J, D’Andrea W J, Liu Z (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev, 48: 67–79
https://doi.org/10.1016/j.quascirev.2012.06.008
25 Jarvis D I (1993). Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quat Res, 39(3): 325–337
https://doi.org/10.1006/qres.1993.1039
26 Keeley J E, Pausas J G, Rundel P W, Bond W J, Bradstock R A (2011). Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci, 16(8): 406–411
https://doi.org/10.1016/j.tplants.2011.04.002
27 Klein Goldewijk K, Beusen A, van Drecht G, de Vos M (2011). The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob Ecol Biogeogr, 20(1): 73–86
https://doi.org/10.1111/j.1466-8238.2010.00587.x
28 Lafon C W, Quiring S M (2012). Relationships of fire and precipitation regimes in temperate forests of the eastern United States. Earth Interact, 16(11): 1–15
https://doi.org/10.1175/2012EI000442.1
29 Li D, Niu S, Long X, Xu G, Wang S, Chen F (2013). Relationship of forest fires and meteorological factors in Sichuan province. Journal of Northwest A&F University (Nat. Sci. Ed), 41(6): 67–74 (in Chinese)
30 Li J, Wang G, Liu X, Han J, Liu M, Liu X (2009). Variations in carbon isotope ratios of C3 plants and distribution of C4 plants along an altitudinal transect on the eastern slope of Mount Gongga. Science China. Earth Sci, 52(11): 1714–1723
31 Lim B, Cachier H (1996). Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays. Chem Geol, 131(1‒4): 143–154
https://doi.org/10.1016/0009-2541(96)00031-9
32 Marlon J, Bartlein P J, Whitlock C (2006). Fire-fuel-climate linkages in the northwestern USA during the Holocene. Holocene, 16(8): 1059–1071
https://doi.org/10.1177/0959683606069396
33 Marlon J R, Bartlein P J, Carcaillet C, Gavin D G, Harrison S P, Higuera P E, Joos F, Power M J, Prentice I C (2008). Climate and human influences on global biomass burning over the past two millennia. Nat Geosci, 1(10): 697–702
https://doi.org/10.1038/ngeo313
34 Marlon J R, Bartlein P J, Daniau A L, Harrison S P, Maezumi S Y, Power M J, Tinner W, Vanniére B (2013). Global biomass burning: a synthesis and review of Holocene paleofire records and their controls.Quat Sci Rev, 65:5–25
https://doi.org/10.1016/j.quascirev.2012.11.029
35 Mooney S D, Harrison S P, Bartlein P J, Daniau A L, Stevenson J, Brownlie K C, Buckman S, Cupper M, Luly J, Black M, Colhoun E, D’Costa D, Dodson J, Haberle S, Hope G S, Kershaw P, Kenyon C, McKenzie M, Williams N (2011). Late Quaternary fire regimes of Australasia. Quat Sci Rev, 30(1‒2): 28–46
https://doi.org/10.1016/j.quascirev.2010.10.010
36 Power M J, Marlon J, Ortiz N, Bartlein P J, Harrison S P, Mayle F E, Ballouche A, Bradshaw R H W, Carcaillet C, Cordova C, Mooney S, Moreno P I, Prentice I C, Thonicke K, Tinner W, Whitlock C, Zhang Y, Zhao Y, Ali A A, Anderson R S, Beer R, Behling H, Briles C, Brown K J, Brunelle A, Bush M, Camill P, Chu G Q, Clark J, Colombaroli D, Connor S, Daniau A L, Daniels M, Dodson J, Doughty E, Edwards M E, Finsinger W, Foster D, Frechette J, Gaillard M J, Gavin D G, Gobet E, Haberle S, Hallett D J, Higuera P, Hope G, Horn S, Inoue J, Kaltenrieder P, Kennedy L, Kong Z C, Larsen C, Long C J, Lynch J, Lynch E A, McGlone M, Meeks S, Mensing S, Meyer G, Minckley T, Mohr J, Nelson D M, New J, Newnham R, Noti R, Oswald W, Pierce J, Richard P J H, Rowe C, Sanchez Goñi M F, Shuman B N, Takahara H, Toney J, Turney C, Urrego-Sanchez D H, Umbanhowar C, Vandergoes M, Vanniere B, Vescovi E, Walsh M, Wang X, Williams N, Wilmshurst J, Zhang J H (2008). Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn, 30(7‒8): 887–907
https://doi.org/10.1007/s00382-007-0334-x
37 Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4): 1869–1887
https://doi.org/10.2458/azu_js_rc.55.16947
38 Schmidt M W I, Noack A G (2000). Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cycles, 14(3): 777–793
https://doi.org/10.1029/1999GB001208
39 Schütt B, Berking J, Frechen M, Frenzel P, Schwalb A, Wrozyna C (2010). Late Quaternary transition from lacustrine to a fluvio-lacustrine environment in the north-western Nam Co, Tibetan Plateau, China. Quat Int, 218(1‒2): 104–117
https://doi.org/10.1016/j.quaint.2009.05.009
40 Shen J, Jones R T, Yang X, Dearing J A, Wang S (2006). The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings. Holocene, 16(2): 265–276
https://doi.org/10.1191/0959683606hl923rp
41 Shen J, Liu X, Wang S, Ryo M (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int, 136(1): 131–140
https://doi.org/10.1016/j.quaint.2004.11.014
42 Tan Z, Han Y, Cao J, Huang C C, An Z (2015). Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China. Quat Sci Rev, 109: 76–87
https://doi.org/10.1016/j.quascirev.2014.11.013
43 Tan Z, Huang C C, Pang J, Zhou Q (2011). Holocene wildfires related to climate and land-use change over the Weihe River Basin, China. Quat Int, 234(1‒2): 167–173
https://doi.org/10.1016/j.quaint.2010.03.008
44 Tan Z, Huang C C, Pang J, Zhou Y (2013). Wildfire history and climatic change in the semi-arid loess tableland in the middle reaches of the Yellow River of China during the Holocene: evidence from charcoal records. Holocene, 23(10): 1466–1476
https://doi.org/10.1177/0959683613493936
45 Thevenon F, Williamson D, Bard E, Anselmetti F S, Beaufort L, Cachier H (2010). Combining charcoal and elemental black carbon analysis in sedimentary archives: implications for past fire regimes, the pyrogenic carbon cycle, and the human–climate interactions. Global Planet Change, 72(4): 381–389
https://doi.org/10.1016/j.gloplacha.2010.01.014
46 Wang B, Clemens S C, Liu P (2003). Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Mar Geol, 201(1‒3): 5–21
https://doi.org/10.1016/S0025-3227(03)00196-8
47 Wang X, Ding Z, Peng P (2012). Changes in fire regimes on the Chinese Loess Plateau since the last glacial maximum and implications for linkages to paleoclimate and past human activity. Palaeogeogr Palaeoclimatol Palaeoecol, 315–316: 61–74
https://doi.org/10.1016/j.palaeo.2011.11.008
48 Wang X, Peng P A, Ding Z L (2005). Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires. Palaeogeogr Palaeoclimatol Palaeoecol, 223(1‒2): 9–19
https://doi.org/10.1016/j.palaeo.2005.03.023
49 Wang X, Xiao J, Cui L, Ding Z (2013). Holocene changes in fire frequency in the Daihai Lake region (north-central China): indications and implications for an important role of human activity. Quat Sci Rev, 59: 18–29
https://doi.org/10.1016/j.quascirev.2012.10.033
50 Whitlock C, Higuera P E, McWethy D B, Briles C E (2010). Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. Open Ecology Journal, 3(2): 6–23
https://doi.org/10.2174/1874213001003020006
51 Wu D, Zhou A, Liu J, Chen X, Wei H, Sun H, Yu J, Bloemendal J, Chen F (2014). Changing intensity of human activity over the last 2,000 years recorded by the magnetic characteristics of sediments from Xingyun Lake, Yunnan, China. J Paleolimnol, 53(1): 1–14
52 Wu Y, Andreas L, Bernd W, Li S, Wang S (2007). Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records. Science China. Earth Sci, 50(10): 1548–1555
53 Yang Y, Shen C, Yi W, Sun Y, Liu D (2001). The elemental carbon record in Weinan loess section since the last 21 ka. Chin Sci Bull, 46(18): 1541–1543
https://doi.org/10.1007/BF02900576
54 Zhou B, Shen C, Sun W, Zheng H, Yang Y, Sun Y, An Z (2007). Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol, 252(3‒4): 617–625
https://doi.org/10.1016/j.palaeo.2007.05.014
55 Zhu L, Zhen X, Wang J, Lü H, Xie M, Kitagawa H, Possnert G (2009). A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. J Paleolimnol, 42(3): 343–358
https://doi.org/10.1007/s10933-008-9280-9
[1] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[2] Qing TIAN, Qing WANG, Yalong LIU. Geomorphic change in Dingzi Bay, East China since the 1950s: impacts of human activity and fluvial input[J]. Front. Earth Sci., 2017, 11(2): 385-396.
[3] Xin JIA,Shuangwen YI,Yonggang SUN,Shuangye WU,Harry F. LEE,Lin WANG,Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[4] Yan LIU, Zhongfa HE, Zhanghua WANG. Magnetic properties of Holocene core ZK9 in the subaqueous Yangtze delta and their mechanisms and implications[J]. Front Earth Sci, 2013, 7(3): 331-340.
[5] Li YAO, Yan ZHAO, Shujun GAO, Jinghui SUN, Furong LI. The peatland area change in past 20 years in the Zoige Basin, eastern Tibetan Plateau[J]. Front Earth Sci, 2011, 5(3): 271-275.
[6] K. NAGESWARA RAO, N. SADAKATA, Vasant SHINDE, A. S. RAJAWAT, AJAI. Subsidence of Holocene sediments in the Godavari delta, India[J]. Front Earth Sci Chin, 2010, 4(4): 410-416.
[7] Jingjing TANG, Hao XU, Zhanghua WANG, . Changes in summer monsoon precipitation over Hunan Province during 1952―2007: response to the west Pacific sea surface temperature and global warming[J]. Front. Earth Sci., 2009, 3(4): 411-418.
[8] Guanghui DONG, Zhengkai XIA, Robert ELSTON, Xiongwei SUN, Fahu CHEN. Response of geochemical records in lacustrine sediments to climate change and human impact during middle Holocene in Mengjin, Henan Province, China[J]. Front Earth Sci Chin, 2009, 3(3): 279-285.
[9] YANG Shouye, YIM Wyss W.-S., TANG Min, HUANG Guangqing. Burial of organic carbon and carbonate on inner shelf of the northern South China Sea during the postglacial period[J]. Front. Earth Sci., 2008, 2(4): 427-433.
[10] Khan Sirajur Rahman, Islam Md Badrul. Holocene stratigraphy of the Lower Ganges-Brahmaputra River delta in Bangladesh[J]. Front. Earth Sci., 2008, 2(4): 393-399.
[11] RAN Lihua, JIANG Hui, KNUDSEN Karen Luise, EIRĺKSSON Jón. The mid- to late Holocene paleoceanographic changes in the northern North Atlantic[J]. Front. Earth Sci., 2008, 2(4): 449-457.
[12] LI Mingji, MA Yuxia, SHI Peiji. Climate changing characteristics of Zhangye City in Heihe River basin during 1968–2005[J]. Front. Earth Sci., 2008, 2(2): 243-248.
[13] YANG Wenguang, ZHENG Hongbo, WANG Ke, XIE Xin, CHEN Guocheng, MEI Xi. Sedimentary characteristics of terrigenous debris at site MD05-2905 in the northeastern part of the South China Sea since 36 ka and evolution of the East Asian monsoon[J]. Front. Earth Sci., 2008, 2(2): 170-176.
[14] JIANG Qingfeng, SHEN Ji, LIU Xingqi, ZHANG Enlou. Holocene climate reconstructions of Ulungur Lake (Xinjiang,China) inferred from ostracod species assemblages and stable isotopes[J]. Front. Earth Sci., 2008, 2(1): 31-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed