Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (2) : 292-302    https://doi.org/10.1007/s11707-016-0552-9
RESEARCH ARTICLE
Reconstructing rice phenology curves with frequency-based analysis and multi-temporal NDVI in double-cropping area in Jiangsu, China
Hongshuo WANG1,2, Hui LIN2,3(), Darla K. MUNROE4, Xiaodong ZHANG1, Pengfei LIU5
1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
2. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
3. Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
4. Department of Geography, The Ohio State University, Columbus, OH 43210, USA
5. School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
 Download: PDF(1231 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Crop phenology retrieval in the double-cropping area of China is of great significance in crop yield estimation and water management under the influences of global change. In this study, rice phenology in Jiangsu Province, China was extracted from multi-temporal MODIS NDVI using frequency-based analysis. Pure MODIS pixels of rice were selected with the help of TM images. Discrete Fourier Transformation (DFT), Discrete Wavelet Transformation (DWT), and Empirical Mode Decomposition (EMD) were performed to decompose time series into components of different frequencies. Rice phenology in the double-cropping area is mainly located on the last 2 IMFs of EMD and the first 2‒3 frequencies of DFT and DWT. Compared with DFT and DWT, EMD is limited to fewer frequencies. Multi-temporal MODIS NDVI data combined with frequency-based analysis can retrieve rice phenology dates with on average 79% valid estimates. The sorting result for effective estimations from different methods is DWT (85%)>EMD (80%)>DFT (74%). Planting date (88%) is easier to estimate than harvesting date (70%). Rice planting date is easily affected by the former cropping mode within the same year in a double-cropping region. This study sheds light on understanding crop phenology dynamics in the frequency domain of multi-temporal MODIS data.

Keywords discrete Fourier transformation      discrete wavelet transformation      empirical mode decomposition      rice phenology      double-cropping     
Corresponding Author(s): Hui LIN   
Just Accepted Date: 14 January 2016   Online First Date: 26 February 2016    Issue Date: 05 April 2016
 Cite this article:   
Hongshuo WANG,Hui LIN,Darla K. MUNROE, et al. Reconstructing rice phenology curves with frequency-based analysis and multi-temporal NDVI in double-cropping area in Jiangsu, China[J]. Front. Earth Sci., 2016, 10(2): 292-302.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0552-9
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I2/292
1 L Andres, W Salas, D Skole (1994). Fourier analysis of multi-temporal AVHRR data applied to a land cover classification. Int J Remote Sens, 15(5): 1115–1121
https://doi.org/10.1080/01431169408954145
2 H Carrao, P Gonalves, M Caetano (2010). A nonlinear harmonic model for fitting satellite image time series: analysis and prediction of land cover dynamics. IEEE Trans Geosci Rem Sens, 48(4): 1919–1930
https://doi.org/10.1109/TGRS.2009.2035615
3 K K Y Chan, B Xu (2013). Perspective on remote sensing change detection of Poyang Lake wetland. Ann GIS, 19(4): 231–243
https://doi.org/10.1080/19475683.2013.843589
4 C F Chen, C R Chen, N T Son (2012). Investigating rice cropping practices and growing areas from MODIS data using empirical mode decomposition and support vector machines. GIsci Remote Sens, 49(1): 117–138
https://doi.org/10.2747/1548-1603.49.1.117
5 C Chen, N Son, L Chang, C Chen (2011). Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series MODIS 250 m NDVI data in the Mekong Delta, Vietnam. Int J Remote Sens, 32(18): 5115–5134
https://doi.org/10.1080/01431161.2010.494639
6 J Chen, P Jonsson, M Tamura, Z Gu, B Matsushita, L Eklundh (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ, 91(3‒4): 332–344
https://doi.org/10.1016/j.rse.2004.03.014
7 E Cleland, I Chuine, A Menzel, H Mooney, M Schwartz (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22(7): 357–365
https://doi.org/10.1016/j.tree.2007.04.003
8 K Coughlin, K Tung (2004). 11-year solar cycle in the stratosphere extracted by the empirical mode decomposition method. Adv Space Res, 34(2): 323–329
https://doi.org/10.1016/j.asr.2003.02.045
9 N Delbart, T Le Toan, L Kergoat, V Fedotova (2006). Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982‒2004). Remote Sens Environ, 101(1): 52–62
https://doi.org/10.1016/j.rse.2005.11.012
10 G Genovese, C Vignolles, T Nègre, G Passera (2001). A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie, 21(1): 91–111
https://doi.org/10.1051/agro:2001111
11 N E Huang, Z Shen, S R Long, M C Wu, H H Shih, Q Zheng, N C Yen, C C Tung, H H Liu (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of Medicine, 454(1971): 903–995
12 N Huang, S Shen (2005). Hilbert-Huang Transform and Its Applications. Singapore: World Scientific Pub Co Inc.
13 A Huete, K Didan, T Miura, E P Rodriguez, X Gao, L G Ferreira (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83(1‒2): 195–213
https://doi.org/10.1016/S0034-4257(02)00096-2
14 E Ito, M Araki, B Tith, S Pol, C Trotter, M Kanzaki, S Ohta (2008). Leaf-shedding phenology in lowland tropical seasonal forests of cambodia as estimated from NOAA satellite images. IEEE Trans Geosci Rem Sens, 46(10): 2867–2871
https://doi.org/10.1109/TGRS.2008.919820
15 P Ivanov, M Rosenblum, C Peng, J Mietus, S Havlin, H Stanley, A Goldberger (1996). Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature, 383(6598): 323–327
https://doi.org/10.1038/383323a0
16 C Justice, J Townshend, B Holben, C Tucker (1985). Analysis of the phenology of global vegetation using meteorological satellite data. Int J Remote Sens, 6(8): 1271–1318
https://doi.org/10.1080/01431168508948281
17 C Justice, J Townshend, E F Vermote, E Masuoka, R E Wolfe, N Saleous, D P Roy, J T Morisette (2002). An overview of MODIS Land data processing and product status. Remote Sens Environ, 83(1‒2): 3–15
https://doi.org/10.1016/S0034-4257(02)00084-6
18 H Kobayashi, D Dye (2005). Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens Environ, 97(4): 519–525
https://doi.org/10.1016/j.rse.2005.06.007
19 D B Lobell, M B Burke, C Tebaldi, M D Mastrandrea, W P Falcon, R L Naylor (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863): 607–610
https://doi.org/10.1126/science.1152339
20 X Lu, R Liu, J Liu, S Liang (2007). Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogramm Eng Remote Sensing, 73(10): 1129–1139
https://doi.org/10.14358/PERS.73.10.1129
21 B Martínez, M A Gilabert (2009). Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens Environ, 113(9): 1823–1842
https://doi.org/10.1016/j.rse.2009.04.016
22 X Mo, S Liu, Z Lin, Y Xu, Y Xiang, T McVicar (2005). Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol Modell, 183(2‒3): 301–322
https://doi.org/10.1016/j.ecolmodel.2004.07.032
23 M Molla, M Rahman, A Sumi, P Banik (2006). Empirical mode decomposition analysis of climate changes with special reference to rainfall data. Discrete Dyn Nat Soc, 2006: 1–17
https://doi.org/10.1155/DDNS/2006/45348
24 S Peng, Q Tang, Y Zou (2009). Current status and challenges of rice production in China. Plant Prod Sci, 12(1): 3–8
https://doi.org/10.1626/pps.12.3
25 D Percival, A Walden (2006). Wavelet Methods for Time Series Analysis.Cambridge University Press
26 S Qian, D Chen (1999). Joint time-frequency analysis. IEEE Signal Process Mag, 16(2): 52–67
https://doi.org/10.1109/79.752051
27 R Raddatz, J Cummine (2003). Inter-annual variability of moisture flux from the prairie agro-ecosystem: impact of crop phenology on the seasonal pattern of tornado days. Boundary-Layer Meteorol, 106(2): 283–295
https://doi.org/10.1023/A:1021117925505
28 G Rilling, P Flandrin, P Goncalvés (2003). On empirical mode decomposition and its algorithms. In Proceedings of the 6th IEEE/EURASIP Workshop on Nonlinear Signal and Image Processing, Grado, Italy 2003
29 T Sakamoto, N Van Nguyen, H Ohno, N Ishitsuka, M Yokozawa (2006). Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens Environ, 100(1): 1–16
https://doi.org/10.1016/j.rse.2005.09.007
30 T Sakamoto, M Yokozawa, H Toritani, M Shibayama, N Ishitsuka, H Ohno (2005). A crop phenology detection method using time-series MODIS data. Remote Sens Environ, 96(3‒4): 366–374
https://doi.org/10.1016/j.rse.2005.03.008
31 S Santoso, E J Powers, W M Grady, P Hofmann (1996). Power quality assessment via wavelet transform analysis. IEEE Trans Power Deliv, 11(2): 924–930
https://doi.org/10.1109/61.489353
32 J Schmidhuber, F N Tubiello (2007). Global food security under climate change. Proc Natl Acad Sci USA, 104(50): 19703–19708
https://doi.org/10.1073/pnas.0701976104
33 J Shen, J Liu, X Lin, R Zhao, S Xu (2011). Cropland extraction from very high spatial resolution satellite imagery by object-based classification using improved mean shift and one-class support vector machines. Sens Lett, 9(3): 997–1005
https://doi.org/10.1166/sl.2011.1361
34 D Slayback, J Pinzon, S Los, C Tucker (2003). Northern hemisphere photosynthetic trends 1982‒99. Glob Change Biol, 9(1): 1–15
https://doi.org/10.1046/j.1365-2486.2003.00507.x
35 G Tan, R Shibasaki (2003). Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecol Modell, 168(3): 357–370
https://doi.org/10.1016/S0304-3800(03)00146-7
36 F Tao, M Yokozawa, Y Xu, Y Hayashi, Z Zhang (2006). Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric Meteorol, 138(1‒4): 82–92
https://doi.org/10.1016/j.agrformet.2006.03.014
37 C Torrence, G Compo (1998). A practical guide to wavelet analysis. Bull Am Math Soc, 79(1): 61–78
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
38 K Vasudevan, F Cook (2000). Empirical mode skeletonization of deep crustal seismic data: theory and applications. J Geophys Res, D, Atmospheres, 105(B4): 7845–7856
https://doi.org/10.1029/1999JB900445
39 H S Wang, J S Chen, Z F Wu, H Lin (2012a). Rice heading date retrieval based on multi-temporal MODIS data and polynomial fitting. Int J Remote Sens, 33(6): 1905–1916
https://doi.org/10.1080/01431161.2011.603378
40 H S Wang, H Lin, J S Chen, F L Chen (2012b). Study on the relationship between sub-pixel percentage cover and multi-temporal NDVI. Int J Remote Sens, 33(17): 5615–5628
https://doi.org/10.1080/01431161.2012.666813
41 H S Wang, H Lin, D S Liu (2014). Remotely sensed drought index and its responses to meteorological drought in Southwest China. Remote Sens Lett, 5(5): 413–422
https://doi.org/10.1080/2150704X.2014.912768
42 H S Wang, J C Rogers, D K Munroe (2015). Commonly used drought indices as indicators of soil moisture in China. J Hydrometeorol, 16(3): 1397–1408
https://doi.org/10.1175/JHM-D-14-0076.1
43 R E Wolfe, M Nishihama, A J Fleig, J A Kuyper, D P Roy, J C Storey, F S Patt (2002). Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens Environ, 83(1‒2): 31–49
https://doi.org/10.1016/S0034-4257(02)00085-8
44 X M Xiao, S Boles, J Y Liu, D F Zhuang, S Frolking, C S Li, W Salas, B Moore III (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ, 95(4): 480–492
https://doi.org/10.1016/j.rse.2004.12.009
45 X You, J Meng, M Zhang, T Dong (2013). Remote sensing based detection of crop phenology for agricultural zones in China using a new threshold method. Remote Sens, 5(7): 3190–3211
https://doi.org/10.3390/rs5073190
[1] Yongjuan LIU, Jianjun CAO, Liping WANG, Xuan FANG, Wolfgang WAGNER. Regional features of topographic relief over the Loess Plateau, China: evidence from ensemble empirical mode decomposition[J]. Front. Earth Sci., 2020, 14(4): 695-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed