Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (4) : 695-710    https://doi.org/10.1007/s11707-020-0819-z
RESEARCH ARTICLE
Regional features of topographic relief over the Loess Plateau, China: evidence from ensemble empirical mode decomposition
Yongjuan LIU1,3, Jianjun CAO2,3,4(), Liping WANG1, Xuan FANG2,3, Wolfgang WAGNER4
1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
2. School of Geography Science/Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, Nanjing 210023, China
3. School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
4. Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna 1040, Austria
 Download: PDF(2033 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Landforms with similar surface matter compositions, endogenic and exogenic forces, and development histories tend to exhibit significant degrees of self-similarity in morphology and spatial variation. In loess hill–gully areas, ridges and hills have similar topographic relief characteristics and present nearly periodic variations of similar repeating structures at certain spatial scales, which is termed the topographic relief period (TRP). This is a relatively new concept, which is different from the degree of relief, and describes the fluctuations of the terrain from both horizontal and vertical (cross-section) perspectives, which can be used for in-depth analysis of 2-D topographic relief features. This technique provides a new perspective for understanding the macro characteristics and differentiation patterns of loess landforms. We investigate TRP variation features of different landforms on the Loess Plateau, China, by extracting catchment boundary profiles (CBPs) from 5 m resolution digital elevation model (DEM) data. These profiles were subjected to temporal-frequency analysis using the ensemble empirical mode decomposition (EEMD) method. The results showed that loess landforms are characterized by significant regional topographic relief; the CBP of 14 sample areas exhibited an overall pattern of decreasing TRPs and increasing topographic relief spatial frequencies from south to north. According to the TRPs and topographic relief characteristics, the topographic relief of the Loess Plateau was divided into four types that have obvious regional differences. The findings of this study enrich the theories and methods for digital terrain data analysis of the Loess Plateau. Future study should undertake a more in-depth investigation regarding the complexity of the region and to address the limitations of the EEMD method.

Keywords catchment boundary profile      topographic relief period      ensemble empirical mode decomposition      Loess Plateau     
Corresponding Author(s): Jianjun CAO   
Online First Date: 14 September 2020    Issue Date: 08 January 2021
 Cite this article:   
Yongjuan LIU,Jianjun CAO,Liping WANG, et al. Regional features of topographic relief over the Loess Plateau, China: evidence from ensemble empirical mode decomposition[J]. Front. Earth Sci., 2020, 14(4): 695-710.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0819-z
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I4/695
Sampling sites Geographic location Landform types
Yulin 109°32'23"–109°44'7"E
38°38'47"–38°45'28"N
Aeolian and dune
Jiaxian 109°59'33"–110°11'10"E
38°12'45"–38°19'29"N
Loess hill
Hengshan 109° 5'22"–109°16'60"E
37°38'18"–37°44'57"N
Loess hill
Suide 110°3'27"–110°14'58"E
37°27'19"–37°34'3"N
Loess hill
Jingbian 108°32'8"–108°43'44"E
37°11'51"–37°18'26"N
Loess ridge–hill
Yan’an 109°30'46"–109°42'10"E
36°19'16"–36°25'56"N
Loess ridge–hill
Yichuan 110°4'12"–110°15'31"E
36° 5'21"–36°12'4"N
Loess ridge
Fuxian 108°40'8"–108°51'32"E
35°52'13"–35°58'48"N
Loess ridge
Huanglong 109°53'42"–110°4'59"E
35°43'29"–35°50'11"N
Loess ridge–tableland
Luochuan 109°26'37"–109°37'54"E
35°31'17"–35°37'56"N
Loess tableland
Xunyi 108°19'7"–108°30'26"E
35° 1'29"–35°8'3"N
Loess fragmented tableland
Pucheng 109°36'02"–109°47'13"E
34°50'20"–34°57'00"N
Loess fragmented tableland
Yongshou 108°4'20"–108°15'38"E
34°46'5"–34°52'37"N
Loess fragmented tableland
Qianyang 107°4'34"E–107°15'56"E
34°43'55"–34°50'22"N
Loess fragmented tableland
Tab.1  Geographic descrition of the study sites
Fig.1  Process flow for extracting catchment boundary profiles. DEM: digital elevation model.
Fig.2  Morphological parsing of catchment boundary profiles (CBP). (a) Catchment boundary on the surface with shaded relief as background. (b) CBP (unfold with an anticlockwise direction).
Sample area Parameter IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 RES
Yulin Variance contribution rate/% 0.0257 0.0094 0.0063 0.0134 0.1559 0.3753 1.0603 0.8886 2.1906 1.3194 0.0023 93.95
Period/m 3.2069 6.5619 13.3292 31.1404 69.1558 156.62 287.84 760.71 1331.25 2662.50 2662.50 --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Jiaxian Variance contribution rate/% 0.0245 0.0088 0.0053 0.0144 0.1950 0.7115 1.9095 2.4140 1.9461 1.1858 0.0057 91.58
Period/m 3.2024 6.5572 13.2939 28.1280 64.5175 124.68 307.53 1153.25 1537.67 2306.50 4613 --
Confidence level >99% <95% <95% >99% >99% >99% >99% >99% >99% >99% >99% --
Hengshan Variance contribution rate/% 0.0215 0.0078 0.0055 0.0252 0.6429 0.7879 1.1816 5.8280 3.7891 0.1401 -- 87.57
Period/m 3.2074 6.3490 13.1131 34.2028 77.3125 140.04 412.33 742.20 1855.50 1855.50 -- --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% -- --
Suide Variance contribution rate/% 0.0218 0.0076 0.0043 0.0096 0.0623 0.1532 0.4667 3.0651 2.6405 2.1114 -- 91.46
Period/m 3.1559 6.4885 13.2582 26.7483 57.5188 131.90 273.21 956.25 1912.50 2550 -- --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% -- --
Jingbian Variance contribution rate/% 0.0303 0.0110 0.0065 0.0175 0.1872 0.3911 2.8338 51.0685 5.9935 0.5473 -- 38.91
Period/m 3.1832 6.5402 13.4409 30.2124 82.2651 126.44 401.65 1707 2276 3414 -- --
Confidence level >99% <95% <95% >99% >99% >99% >99% >99% >99% >99% -- --
Yan'an Variance contribution rate/% 0.0257 0.0104 0.0132 0.1480 1.7661 4.2753 5.5753 21.8382 14.5225 1.4284 0.0000 50.40
Period/m 3.1779 6.5835 14.0599 38.5887 81.7798 185.71 318.36 1114.25 2228.50 4457 Inf --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Yichuan Variance contribution rate/% 0.0212 0.0081 0.0094 0.0319 0.2527 0.6003 0.5286 1.0666 2.0095 0.6038 0.0111 94.86
Period/m 3.1532 6.5275 14.2943 32.4964 67.9248 148.10 301.13 645.29 1129.25 2258.50 4517 --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Fuxian Variance contribution rate/% 0.0228 0.0083 0.0086 0.0618 0.4890 2.3066 3.2257 1.4275 8.2622 0.7899 0.2519 83.15
Period/m 3.2153 6.6503 13.7288 36.9815 74.2370 169.86 357.93 626.38 1670.33 5011 5011 --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Huanglong Variance contribution rate/% 0.0303 0.0115 0.0154 0.1243 1.2210 6.3551 4.3871 33.7958 24.4366 3.1237 0.0000 26.50
Period/m 3.1993 6.4540 13.9381 37.3712 83.9020 171.16 534.88 1069.75 2852.67 4279 4279 --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Luochuan Variance contribution rate/% 0.0253 0.0090 0.0084 0.0980 0.4167 0.4735 1.0070 0.7850 2.6711 1.6407 0.0002 92.87
Period/m 3.2607 6.6089 14.1743 34.1984 69.5000 130.58 331.46 538.63 2154.50 4309 Inf --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Xunyi Variance contribution rate/% 0.0228 0.0081 0.0056 0.0180 0.0740 0.1037 0.2634 2.2865 3.3380 0.1924 0.0001 93.69
Period/m 3.2047 6.4654 13.3469 33.7381 61.1655 130.80 354.25 850.20 2125.50 4251 8502 --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Pucheng Variance contribution rate/% 0.0293 0.0117 0.0135 0.0235 0.1500 0.3681 1.0154 1.5289 1.6306 0.9683 -- 94.26
Period/m 3.2175 6.4375 13.4799 27.7034 61.8000 133.90 365.18 1004.25 2008.50 2678 -- --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% -- --
Yongshou Variance contribution rate/% 0.0229 0.0090 0.0077 0.0358 0.7214 2.1104 2.8088 4.2091 2.6032 0.3255 0.0001 87.15
Period/m 3.1928 6.5444 14.1130 32.8986 87.7297 173.89 347.79 973.80 1623 4869 9738 --
Confidence level >99% <95% >99% >99% >99% >99% >99% >99% >99% >99% >99% --
Qianyang Variance contribution rate/% 0.0283 0.0103 0.0051 0.0074 0.0681 0.1433 0.5041 4.0998 7.5288 0.8433 0.0041 86.76
Period/m 3.2012 6.4856 13.2217 27.7538 53.1149 128.36 770.17 924.20 2310.50 3080.67 4621 --
Confidence level >99% <95% <95% >99% >99% >99% >99% >99% >99% >99% >99% --
Tab.2  Parameters of catchment boundary profiles (CBP) from the ensemble empirical mode decomposition (EEMD) for the 14 sample areas
Fig.3  Significance test for the catchment boundary profiles from the ensemble empirical mode decomposition (EEMD) for (a) Yulin and (b) Jiaxian. IMFs: intrinsic mode functions.
Fig.4  Significance test for the catchment boundary profiles from the ensemble empirical mode decomposition (EEMD) for (a) Hengshan and (b) Suide. IMFs: intrinsic mode functions.
Fig.5  Significance test for the catchment boundary profiles from the ensemble empirical mode decomposition (EEMD) for (a) Jingbian and (b) Yan’an. IMFs: intrinsic mode functions.
Fig.6  Significance test for the catchment boundary profiles from the ensemble empirical mode decomposition (EEMD) for (a) Yichuan and (b) Fuxian. IMFs: intrinsic mode functions.
Fig.7  Significance test for the catchment boundary profiles from the ensemble empirical mode decomposition (EEMD) for (a) Huanglong and (b) Luochuan. IMFs: intrinsic mode functions.
Fig.8  Significance test for the catchment boundary profiles from the ensemble empirical mode decomposition (EEMD) for (a) Xunyi and (b) Pucheng. IMFs: intrinsic mode functions.
Fig.9  Significance test for the catchment boundary profiles from the ensemble empirical mode decomposition (EEMD) for (a) Yongshou and (b) Qianyang. IMFs: intrinsic mode functions.
Fig.10  Multi-fractal spectrum of the catchment boundary profile topographic-relief variation feature of sampling sites on the Loess Plateau, (a)–(n) are Yulin, Jiaxian, Hengshan, Suide, Jingbian, Yan’an, Yichuan, Fuxian, Huanglong, Luochuan, Xunyi, Pucheng, Yongshou, and Qianyang, respectively.
Fig.11  Singularity strength of the catchment boundary profile topographic-relief variation of sampling sites on the Loess Plateau, where the x-axis represents the sampling sites: 1. Yulin, 2. Jiaxian, 3. Hengshan, 4. Suide, 5. Jingbian, 6. Yan’an, 7. Yichuan, 8. Fuxian, 9. Huanglong, 10. Luochuan, 11. Xunyi, 12. Pucheng, 13. Yongshou, and 14. Qianyang.
1 C D Allen (2009). Monitoring environmental impact in the Upper Sonoran Lifestyle: a new tool for rapid ecological assessment. Environ Manage, 43(2): 346–356
https://doi.org/10.1007/s00267-008-9212-5 pmid: 18850243
2 R Ambreen, I Ahmad, X Qiu, M Li (2015). Regional and monthly assessment of possible sunshine duration in Pakistan: a geographical approach. J Geogr Inf Syst, 7(01): 65–70
https://doi.org/10.4236/jgis.2015.71006
3 R Andrle (1992). Estimating fractal dimension with the divider method in geomorphology. Geomorphology, 5(1-2): 131–141
https://doi.org/10.1016/0169-555X(92)90061-R
4 A B Ariza-Villaverde, F J Jiménez-Hornero, E Gutiérrez de Ravé (2015). Influence of DEM resolution on drainage network extraction: a multifractal analysis. Geomorphology, 241: 243–254
https://doi.org/10.1016/j.geomorph.2015.03.040
5 C Badgley, T M Smiley, R Terry, E B Davis, L R G DeSantis, D L Fox, S S B Hopkins, T Jezkova, M D Matocq, N Matzke, J L McGuire, A Mulch, B R Riddle, V L Roth, J X Samuels, C A E Strömberg, B J Yanites (2017). Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol Evol, 32(3): 211–226
https://doi.org/10.1016/j.tree.2016.12.010 pmid: 28196688
6 L E Bertassello, P S C Rao, G Botter, A F Aubeneau (2018). Topographic analysis of wetlandscapes: fractal dimension and scaling properties. EPiC Series in Engineering, 3: 217–226
https://doi.org/10.29007/c7r5
7 L Bi, H He, Z Wei, F Shi (2012). Fractal properties of landforms in the Ordos Block and surrounding areas, China. Geomorphology, 175: 151–162
https://doi.org/10.1016/j.geomorph.2012.07.006
8 B A Black, J T Perron, D Hemingway, E Bailey, F Nimmo, H Zebker (2017). Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science, 356(6339): 727–731
https://doi.org/10.1126/science.aag0171 pmid: 28522528
9 I Bollati, M Pellegrini, E Reynard, M Pelfini (2017). Water driven processes and landforms evolution rates in mountain geomorphosites: examples from Swiss Alps. Catena, 158: 321–339
https://doi.org/10.1016/j.catena.2017.07.013
10 S Bumbak, M Ilies (2014). Implications of relief configuration in the socioeconomic system: the case of Mara Basin, Maramures Land, Romania. Journal of Settlements and Spatial Planning, 3: 31
11 J Cao, G Tang, X Fang, J Li, Y Liu, Y Zhang, Y Zhu, F Li (2017). Topographic spatial variation analysis of loess shoulder lines in the Loess Plateau of China based on MF-DFA. ISPRS Int J Geoinf, 6(5): 141
https://doi.org/10.3390/ijgi6050141
12 J Cao, G Tang, X Fang, J Li, Y Liu, Y Zhang, F Li (2019). Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China. Front Earth Sci, 13(2): 410–421
https://doi.org/10.1007/s11707-018-0732-x
13 G Cao, L Y He, J Cao (2018). Multifractal detrended fluctuation analysis (mf-dfa). In: Multifractal Detrended Analysis Method and Its Application in Financial Markets. Singapore: Springer
14 W Cao, Z Cai, Z Tang (2015). Fractal structure of lunar topography: An interpretation of topographic characteristics. Geomorphology, 238: 112–118
https://doi.org/10.1016/j.geomorph.2015.03.002
15 A Chhabra, R V Jensen (1989). Direct determination of the f(α) singularity spectrum. Phys Rev Lett, 62(12): 1327–1330
https://doi.org/10.1103/PhysRevLett.62.1327 pmid: 10039645
16 K C Clarke, B E Romero (2017). On the topology of topography: a review. Cartogr Geogr Inf Sci, 44(3): 271–282
https://doi.org/10.1080/15230406.2016.1164625
17 P Collier, D Forrest, A Pearson (2003). The representation of topographic information on maps: the depiction of relief. Cartogr J, 40(1): 17–26
https://doi.org/10.1179/000870403235002033
18 G S Cowley, J D Niemann, T R Green, M S Seyfried, A S Jones, P J Grazaitis (2017). Impacts of precipitation and potential evapotranspiration patterns on downscaling soil moisture in regions with large topographic relief. Water Resour Res, 53(2): 1553–1574
https://doi.org/10.1002/2016WR019907
19 A Czirók, E Somfai, T Vicsek (1994). Self-affine roughening in a model experiment on erosion in geomorphology. Physica A, 205(1-3): 355–366
https://doi.org/10.1016/0378-4371(94)90513-4
20 R de Matos-Machado, J P Toumazet, J C Bergès, J P Amat, G Arnaud-Fassetta, F Bétard, C Bilodeau, J P Hupy, S Jacquemot (2019). War landform mapping and classification on the Verdun battlefield (France) using airborne LiDAR and multivariate analysis. Earth Surf Process Landf, 44(7): 1430–1448
https://doi.org/10.1002/esp.4586
21 H L Diefenderfer, I A Sinks, S A Zimmerman, V I Cullinan, A B Borde (2018). Designing topographic heterogeneity for tidal wetland restoration. Ecol Eng, 123: 212–225
https://doi.org/10.1016/j.ecoleng.2018.07.027
22 S Dutta (2017). Decoding the morphological differences between Himalayan Glacial and fluvial landscapes using multifractal analysis. Sci Rep, 7(1): 11032
https://doi.org/10.1038/s41598-017-11669-0 pmid: 28887519
23 S F Dymond, J B Bradford, P V Bolstad, R K Kolka, S D Sebestyen, T M DeSutter (2017). Topographic, edaphic, and vegetative controls on plant—available water. Ecohydrology, 10(8): e1897
https://doi.org/10.1002/eco.1897
24 C Farkas, S H Kværnø, A Engebretsen, R Barneveld, J Deelstra (2016). Applying profile-and catchment-based mathematical models for evaluating the run-off from a Nordic catchment. J Hydrol Hydromech, 64(3): 218–225
https://doi.org/10.1515/johh-2016-0022
25 B Gailleton, S M Mudd, F J Clubb, D Peifer, M D Hurst (2019). A segmentation approach for the reproducible extraction and quantification of knickpoints from river long profiles. Earth Surface Dynamics, 7(1): 211–230
https://doi.org/10.5194/esurf-7-211-2019
26 B Gomez (1984). Typology of segregated (armoured/paved) surfaces: some comments. Earth Surf Process Landf, 9(1): 19–24
https://doi.org/10.1002/esp.3290090103
27 M Greiner, J Schmiegel, F Eickemeyer, P Lipa, H C Eggers (1998). Spatial correlations of singularity strengths in multifractal branching processes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 58(1): 554–564
https://doi.org/10.1103/PhysRevE.58.554
28 F E Gruber, J Baruck, V Mair, C Geitner (2019). From geological to soil parent material maps—a random forest-supported analysis of geological map units and topography to support soil survey in South Tyrol. Geoderma, 354: 113884
https://doi.org/10.1016/j.geoderma.2019.113884
29 Y Gu, B K Wylie (2016). Using satellite vegetation and compound topographic indices to map highly erodible cropland buffers for cellulosic biofuel crop developments in eastern Nebraska, USA. Ecol Indic, 60: 64–70
https://doi.org/10.1016/j.ecolind.2015.06.019
30 Y Hui, L Yong, L Shaoquan, W Yong, Y Yong, L Weidong (2015). The influences of topographic relief on spatial distribution of mountain settlements in Three Gorges Area. Environ Earth Sci, 74(5): 4335–4344
https://doi.org/10.1007/s12665-015-4443-2
31 E A F E Ihlen (2012). Introduction to multifractal detrended fluctuation analysis in matlab. Front Physiol, 3: 141
https://doi.org/10.3389/fphys.2012.00141 pmid: 22675302
32 R M Iverson, D L George, K Allstadt, M E Reid, B D Collins, J W Vallance, S P Schilling, J W Godt, C M Cannon, C S Magirl, R L Baum, J A Coe, W H Schulz, J B Bower (2015). Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth Planet Sci Lett, 412: 197–208
https://doi.org/10.1016/j.epsl.2014.12.020
33 J W Kantelhardt, D Rybski, S A Zschiegner, P Braun, E Koscielny-Bunde, V Livina, S Havlin, A Bunde (2003). Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods. Physica A, 330(1–2): 240–245
https://doi.org/10.1016/j.physa.2003.08.019
34 J W Kantelhardt, S A Zschiegner, E Koscielny-Bunde, S Havlin, A Bunde, H E Stanley (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(1–4): 87–114
https://doi.org/10.1016/S0378-4371(02)01383-3
35 F Karim, C Petheram, S Marvanek, C Ticehurst, J Wallace, M Hasan (2016). Impact of climate change on floodplain inundation and hydrological connectivity between wetlands and rivers in a tropical river catchment. Hydrol Processes, 30(10): 1574–1593
https://doi.org/10.1002/hyp.10714
36 U Khan, N K Tuteja, A Sharma, S Lucas, B Murphy, B Jenkins (2016). Applicability of Hydrologic Response Units in low topographic relief catchments and evaluation using high resolution aerial photograph analysis. Environ Model Softw, 81: 56–71
https://doi.org/10.1016/j.envsoft.2016.03.010
37 E M Latrubesse, P A Baker, J Argollo (2009). Geomorphology of natural hazards and human-induced disasters in Bolivia. Developments in Earth Surface Processes, 13: 181–194
https://doi.org/10.1016/S0928-2025(08)10010-4
38 M Leger (1990). Loess landforms. Quat Int, 7: 53–61
https://doi.org/10.1016/1040-6182(90)90038-6
39 X Li, G W McCarty, D L Karlen, C A Cambardella (2018). Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields. Catena, 160: 222–232
https://doi.org/10.1016/j.catena.2017.09.026
40 M Li, X Yang, J Na, K Liu, Y Jia, L Xiong (2017). Regional topographic classification in the north Shaanxi Loess Plateau based on catchment boundary profiles. Prog Phys Geogr, 41(3): 302–324
https://doi.org/10.1177/0309133317706356
41 Y Li (2015). Effects of analytical window and resolution on topographic relief derived using digital elevation models. GIsci Remote Sens, 52(4): 462–477
https://doi.org/10.1080/15481603.2015.1049577
42 Y Li, T Zhang, Y Zhang, Q Xu (2018). Geometrical appearance and spatial arrangement of structural blocks of the Malan loess in NW China: implications for the formation of loess columns. J Asian Earth Sci, 158: 18–28
https://doi.org/10.1016/j.jseaes.2018.02.007
43 Y Liu, W Deng, X Q Song (2015). Relief degree of land surface and population distribution of mountainous areas in China. J Mt Sci, 12(2): 518–532
https://doi.org/10.1007/s11629-013-2937-5
44 Z W Li, G H Zhang, R Geng, H Wang (2015). Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau. Geomorphology, 248: 264–272
https://doi.org/10.1016/j.geomorph.2015.07.036
45 J Luo, Z Zheng, T Li, S He (2018). Assessing the impacts of microtopography on soil erosion under simulated rainfall, using a multifractal approach. Hydrol Processes, 32(16): 2543–2556
https://doi.org/10.1002/hyp.13170
46 R Machowski, M A Rzetala, M Rzetala, M Solarski (2016). Geomorphological and hydrological effects of subsidence and land use change in industrial and urban areas. Land Degrad Dev, 27(7): 1740–1752
https://doi.org/10.1002/ldr.2475
47 D S Mackay, L E Band (1998). Extraction and representation of nested catchment areas from digital elevation models in lake—dominated topography. Water Resour Res, 34(4): 897–901
https://doi.org/10.1029/98WR00094
48 R A MacMillan, P A Shary (2009). Landforms and landform elements in geomorphometry. Developments in soil science, 33: 227–254
49 D M Mark, P B Aronson (1984). Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. J Int Assoc Math Geol, 16(7): 671–683
https://doi.org/10.1007/BF01033029
50 B E Marston, B Jenny (2015). Improving the representation of major landforms in analytical relief shading. Int J Geogr Inf Sci, 29(7): 1144–1165
https://doi.org/10.1080/13658816.2015.1009911
51 S J Martel (2016). Effects of small-amplitude periodic topography on combined stresses due to gravity and tectonics. Int J Rock Mech Min Sci, 89: 1–13
https://doi.org/10.1016/j.ijrmms.2016.07.026
52 X Meng, L Y Xiong, X W Yang, B S Yang, G A Tang (2018). A terrain openness index for the extraction of karst Fenglin and Fengcong landform units from DEMs. J Mt Sci, 15(4): 752–764
https://doi.org/10.1007/s11629-017-4742-z
53 J Na, X Yang, W Dai, M Li, L Xiong, R Zhu, G Tang (2018). Bidirectional DEM relief shading method for extraction of gully shoulder line in loess tableland area. Phys Geogr, 39(4): 368–386
https://doi.org/10.1080/02723646.2017.1410974
54 C G Nunalee, Á Horváth, S Basu (2015). High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data. Geosci Model Dev, 8(8): 2645–2653
https://doi.org/10.5194/gmd-8-2645-2015
55 H A Orengo, C A Petrie (2018). Multi-scale relief model (MSRM): a new algorithm for the visualization of subtle topographic change of variable size in digital elevation models. Earth Surf Process Landf, 43(6): 1361–1369
https://doi.org/10.1002/esp.4317 pmid: 30008499
56 H G Orr, A R G Large, M D Newson, C L Walsh (2008). A predictive typology for characterising hydromorphology. Geomorphology, 100(1–2): 32–40
https://doi.org/10.1016/j.geomorph.2007.10.022
57 F C Persendt, C Gomez (2016). Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs. Geomorphology, 260: 32–50
https://doi.org/10.1016/j.geomorph.2015.06.047
58 J Robl, S Hergarten, G Prasicek (2017). The topographic state of fluvially conditioned mountain ranges. Earth Sci Rev, 168: 190–217
https://doi.org/10.1016/j.earscirev.2017.03.007
59 A Savvides, A Michael, E Malaktou, M Philokyprou (2016). Examination and assessment of insolation conditions of streetscapes of traditional settlements in the Eastern Mediterranean area. Habitat Int, 53: 442–452
https://doi.org/10.1016/j.habitatint.2015.12.002
60 E Serrano, M Oliva, M González-García, J I López-Moreno, J González-Trueba, R Martín-Moreno, M Gómez-Lende, J Martín-Díaz, J Nofre, P Palma (2018). Post-little ice age paraglacial processes and landforms in the high Iberian mountains: a review. Land Degrad Dev, 29(11): 4186–4208
https://doi.org/10.1002/ldr.3171
61 D G Stephen, J A Dixon (2011). Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos Solitons Fractals, 44(1–3): 160–168
https://doi.org/10.1016/j.chaos.2011.01.005
62 Z R Struzik (2000). Determining local singularity strengths and their spectra with the wavelet transform. Fractals, 8(02): 163–179
https://doi.org/10.1142/S0218348X00000184
63 M Tammelin, T Kauppila (2018). Quaternary landforms and basin morphology control the natural eutrophy of boreal lakes and their sensitivity to anthropogenic forcing. Front Ecol Evol, 6(65): 1–18
https://doi.org/10.3389/fevo.2018.00065
64 T Telbisz, Z Bottlik, L Mari, M Kőszegi (2014). The impact of topography on social factors: a case study of Montenegro. J Mt Sci, 11(1): 131–141
https://doi.org/10.1007/s11629-012-2623-z
65 D Wang, B Fu, K Lu, L Xiao, Y Zhang, X Feng (2010). Multifractal analysis of land use pattern in space and time: a case study in the Loess Plateau of China. Ecol Complex, 7(4): 487–493
https://doi.org/10.1016/j.ecocom.2009.12.004
66 Y Wang, Q Ding, D Zhuang (2015). An eco-city evaluation method based on spatial analysis technology: A case study of Jiangsu Province, China. Ecol Indic, 58: 37–46
https://doi.org/10.1016/j.ecolind.2015.05.032
67 Z Wu, N E Huang (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal, 1(01): 1–41
https://doi.org/10.1142/S1793536909000047
68 J R Wyrick, A E Senter, G B Pasternack (2014). Revealing the natural complexity of fluvial morphology through 2D hydrodynamic delineation of river landforms. Geomorphology, 210: 14–22
https://doi.org/10.1016/j.geomorph.2013.12.013
69 C B Xi, T L Qian, Y Chi, J Chen, J C Wang (2018). Relationship between settlements and topographical factors: an example from Sichuan Province, China. J Mt Sci, 15(9): 2043–2054
https://doi.org/10.1007/s11629-018-4863-z
70 L Y Xiong, G A Tang, J Strobl, A X Zhu (2016). Paleotopographic controls on loess deposition in the Loess Plateau of China. Earth Surf Process Landf, 41(9): 1155–1168
https://doi.org/10.1002/esp.3883
71 L Y Xiong, G A Tang, A X Zhu, Y Q Qian (2017). A peak-cluster assessment method for the identification of upland planation surfaces. Int J Geogr Inf Sci, 31(2): 387–404
https://doi.org/10.1080/13658816.2016.1205193
72 F Yang, Y Zhou (2017). Quantifying spatial scale of positive and negative terrains pattern at watershed-scale: case in soil and water conservation region on Loess Plateau. J Mt Sci, 14(8): 1642–1654
https://doi.org/10.1007/s11629-016-4227-5
73 X Yang, G Tang, X Meng, L Xiong (2019). Classification of Karst fenglin and fengcong landform units based on spatial relations of terrain feature points from DEMs. Remote Sens, 11(16): 1950
https://doi.org/10.3390/rs11161950
74 J Zhang, W Zhu, L Zhu, Y Cui, S He, H Ren (2019). Topographical relief characteristics and its impact on population and economy: a case study of the mountainous area in western Henan, China. J Geogr Sci, 29(4): 598–612
https://doi.org/10.1007/s11442-019-1617-y
75 Y Zhang, G Fan, Y He, L Cao (2017). Risk assessment of typhoon disaster for the Yangtze River Delta of China. Geomatics Nat Hazards Risk, 8(2): 1580–1591
https://doi.org/10.1080/19475705.2017.1362040
76 S Zhao, Y Yu, D Qin, D Yin, Z Du, J Li, L Dong, J He, P Li (2019). Measurements of submicron particles vertical profiles by means of topographic relief in a typical valley city, China. Atmos Environ, 199: 102–113
https://doi.org/10.1016/j.atmosenv.2018.11.035
77 L Zhou, L Y Xiong (2018). Natural topographic controls on the spatial distribution of poverty-stricken counties in China. Appl Geogr, 90: 282–292
https://doi.org/10.1016/j.apgeog.2017.10.006
78 Y Zhou, G A Tang, X Yang, C Xiao, Y Zhang, M Luo (2010). Positive and negative terrains on northern Shaanxi Loess Plateau. J Geogr Sci, 20(1): 64–76
https://doi.org/10.1007/s11442-010-0064-6
[1] Jinzhao LIU, Zhisheng AN. Comparison of different chain n-fatty acids in modern plants on the Loess Plateau of China[J]. Front. Earth Sci., 2020, 14(3): 615-624.
[2] Guowei PANG, Qinke YANG, Chunmei WANG, Rui LI, Lu ZHANG. Quantitative assessment of the influence of terrace and check dam construction on watershed topography[J]. Front. Earth Sci., 2020, 14(2): 360-375.
[3] Jianjun CAO, Guoan TANG, Xuan FANG, Jilong LI, Yongjuan LIU, Yiting ZHANG, Ying ZHU, Fayuan LI. Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China[J]. Front. Earth Sci., 2019, 13(2): 410-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed