Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (3) : 482-495    https://doi.org/10.1007/s11707-017-0645-0
RESEARCH ARTICLE
Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, Northern Colorado
Ryan W. WEBB()
Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80309-0450, USA
 Download: PDF(6552 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Snow is an important environmental variable in headwater systems that controls hydrological processes such as streamflow, groundwater recharge, and evapotranspiration. These processes will be affected by both the amount of snow available for melt and the rate at which it melts. Snow water equivalent (SWE) and snowmelt are known to vary within complex subalpine terrain due to terrain and canopy influences. This study assesses this variability during the melt season using ground penetrating radar to survey multiple plots in northwestern Colorado near a snow telemetry (SNOTEL) station. The plots include south aspect and flat aspect slopes with open, coniferous (subalpine fir,Abies lasiocarpa and engelman spruce, Picea engelmanii), and deciduous (aspen, populous tremuooides) canopy cover. Results show the high variability for both SWE and loss of SWE during spring snowmelt in 2014. The coefficient of variation for SWE tended to increase with time during snowmelt whereas loss of SWE remained similar. Correlation lengths for SWE were between two and five meters with melt having correlation lengths between two and four meters. The SNOTEL station regularly measured higher SWE values relative to the survey plots but was able to reasonably capture the overall mean loss of SWE during melt. Ground Penetrating Radar methods can improve future investigations with the advantage of non-destructive sampling and the ability to estimate depth, density, and SWE.

Keywords headwaters      snowmelt      snow water equivalent      ground penetrating rdar      SNOTEL     
Corresponding Author(s): Ryan W. WEBB   
Just Accepted Date: 24 February 2017   Online First Date: 06 April 2017    Issue Date: 12 July 2017
 Cite this article:   
Ryan W. WEBB. Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, Northern Colorado[J]. Front. Earth Sci., 2017, 11(3): 482-495.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0645-0
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I3/482
Fig.1  The location of the Dry Lake study site and transects are shown as (a) the relative location in Colorado, (b) hillshade of nearby surrounding terrain, (c) a photograph of the study site, and (d) transects T1 through T4 shown with two meter contours. Locations of snow pits (SP) used to calibrate GPR velocity are indicated with boxes.
Fig.2  Ground Penetrating Radar data for transect 1 on May 4 showing (a) data with a spherical and elliptical filter for interpretation and (b) the interpreted ground surface reflection and associated survey plot types.
Fig.3  Bulk snow density observations conducted at the Dry Lake Study Area during the dates of the Ground Penetrating Radar (GPR) surveys (Webb and Fassnacht, 2016). Measurements that coincide with depth measurements for GPR calibration are indicated with white “X” marks.
Fig.4  Interpreted snow water equivalent (SWE) for (a) Transect one, (b) Transect two, (c) Transect three, and (d) Transect four. Color shading is associated with the land cover and slope aspect types with flat aspect with open cover (FO) shaded white, flat aspect with deciduous cover (FD) shaded tan, flat aspect with coniferous cover (FC) shaded green, and south aspect with open cover (SO) shaded pink. Each transect has a boxed area that is expanded for an enlarged view of the SWE profile in panels i-iv.
Fig.5  Calculated loss of snow water equivalent (SWE) for (a) Transect one, (b) Transect two, (c) Transect three, and (d) Transect four. Color shading is associated with the land cover and slope aspect types with flat aspect with open cover (FO) shaded white, flat aspect with deciduous cover (FD) shaded tan, flat aspect with coniferous cover (FC) shaded green, and south aspect with open cover (SO) shaded pink. Each transect has a boxed area that is expanded for an enlarged view of the loss of SWE profile in panels i-iv.
Fig.6  Results of the snow water equivalent (SWE) surveys for all plots including south aspect with open cover (SO), flat aspect with open cover (FO), flat aspect with deciduous cover (FD), and flat aspect with coniferous cover (FC). The top panels display mean SWE for each plot compared to the overall mean and SWE measured at the SNOTEL station for that date. The bottom panels show the associated coefficients of variation.
Fig.7  Daily snow water equivalent (SWE) observations at the Dry Lake SNOTEL station and calculated loss of SWE each day. Boxes indicate survey dates for this study.
Fig.8  Results of the calculated loss of snow water equivalent (SWE) for all plots including south aspect and open cover (SO), flat aspect with open cover (FO), flat aspect with deciduous cover (FD), and flat aspect with coniferous cover (FC). The top panels display the mean loss of SWE for each plot compared to the overall mean and that measured at the SNOTEL station for each melt period. The bottom panels show the associated coefficients of variation.
Fig.9  Histograms for each plot type for snow water equivalent (SWE) measurements (left) and calculated loss of SWE (right) for all plot types (a) south aspect with open canopy (SO), (b) flat aspect and open canopy (FO), (c) flat aspect with a deciduous canopy (FD), and (d) flat aspect with coniferous canopy cover (FC).
Fig.10  Variograms of measured snow water equivalent (SWE) using ground penetrating radar for each of the plots with (a)?(c) flat aspect and open cover (FO), (d) flat aspect and coniferous cover (FC), (e)?(f) south aspect and open cover (SO), and (g)?(k) flat aspect with deciduous cover (FD). The range of each variogram is listed in each figure.
Fig.11  Variograms of calculated loss of snow water equivalent (SWE) for each of the plots with (a)?(c) flat aspect and open cover (FO), (d) flat aspect and coniferous cover (FC), (e)?(f) south aspect and open cover (SO), and (g)?(k) flat aspect with deciduous cover (FD). The range of each variogram is listed in each figure.
1 Adam J C, Hamlet  A F, Lettenmaier  D P (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol Processes, 23(7): 962–972
https://doi.org/10.1002/hyp.7201
2 Andreadis K M ,  Storck P ,  Lettenmaier D P  (2009). Modeling snow accumulation and ablation processes in forested environments. Water Resour Res, 45(5) 
https://doi.org/10.1029/2008WR007042
3 Bales R C, Hopmans  J W, O’Geen  A T, Meadows  M, Hartsough P C ,  Kirchner P ,  Hunsaker C T ,  Beaudette D  (2011). Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J, 10(3): 786–799
https://doi.org/10.2136/vzj2011.0001
4 Bales R C, Molotch  N P, Painter  T H, Dettinger  M D, Rice  R, Dozier J  (2006). Mountain hydrology of the western United States. Water Resour Res, 42(8): W08432
https://doi.org/10.1029/2005WR004387
5 Blöschl G (1999). Scaling issues in snow hydrology. Hydrol Processes, 13(14–15): 2149–2175
https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8
6 Blöschl G, Kirnbauer  R (1992). An analysis of snow cover patterns in a small alpine catchment. Hydrol Processes, 6(1): 99–109
https://doi.org/10.1002/hyp.3360060109
7 Broxton P D, Harpold  A A, Biederman  J A, Troch  P A, Molotch  N P, Brooks  P D (2015). Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests. Ecohydrology, 8(6): 1073–1094
https://doi.org/10.1002/eco.1565
8 Cao J, Liu  C, Zhang W  (2012). Response of rock-fissure seepage to snowmelt in Mount Taihang slope-catchment, North China. Water Sci Technol, 67(1): 124–130
https://doi.org/10.2166/wst.2012.542
9 Clark M P, Hendrikx  J, Slater A G ,  Kavetski D ,  Anderson B ,  Cullen N ,  Kerr T, Örn Hreinsson  E, Woods R A  (2011). Representing spatial variability of snow water equivalent in hydrologic and land-surface models: a review. Water Resour Res, 47(7): W07539
https://doi.org/10.1029/2011WR010745
10 Clilverd H M, White  D M, Tidwell  A C, Rawlins  M A (2011). Sensitivity of northern groundwater recharge to climate change: a case study in Northwest Alaska. Journal of the American Water Resources Association, 47(6): 1228–1240 
https://doi.org/10.1111 ?j.1752-1688.2011.00569.x
11 Cline D, Yueh  S, Chapman B ,  Stankov B ,  Gasiewski A ,  Masters D ,  Elder K ,  Kelly R ,  Painter T H ,  Miller S ,  Katzberg S ,  Mahrt L  (2009). NASA Cold Land Processes Experiment (CLPX 2002/03): airborne remote sensing. J Hydrometeorol, 10(1): 338–346
https://doi.org/10.1175/2008JHM883.1
12 Clow D W (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim, 23(9): 2293–2306
https://doi.org/10.1175/2009JCLI2951.1
13 Daly S F, Davis  R, Ochs E ,  Pangburn T  (2000). An approach to spatially distributed snow modelling of the Sacramento and San Joaquin basins, California. Hydrol Processes, 14(18): 3257–3271
https://doi.org/10.1002/1099-1085(20001230)14:18<3257::AID-HYP199>3.0.CO;2-Z
14 Ebel B A, Hinckley  E S, Martin  D A (2012). Soil-water dynamics and unsaturated storage during snowmelt following wildfire. Hydrol Earth Syst Sci, 16(5): 1401–1417
https://doi.org/10.5194/hess-16-1401-2012
15 Eiriksson D, Whitson  M, Luce C H ,  Marshall H P ,  Bradford J ,  Benner S G ,  Black T ,  Hetrick H ,  McNamara J P  (2013). An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales. Hydrol Processes, 27(5): 640–654
https://doi.org/10.1002/hyp.9666
16 Elder K, Cline  D, Liston G E ,  Armstrong R  (2009). NASA Cold Land Processes Experiment (CLPX 2002/03): field measurements of snowpack properties and soil moisture. J Hydrometeorol, 10(1): 320–329
https://doi.org/10.1175/2008JHM877.1
17 Elder K, Dozier  J, Michaelsen J  (1991). Snow accumulation and distribution in an Alpine watershed. Water Resour Res, 27(7): 1541–1552
https://doi.org/10.1029/91WR00506
18 Fang S, Xu  L, Zhu Y ,  Liu Y, Liu  Z, Pei H ,  Yan J, Zhang  H (2015). An integrated information system for snowmelt flood early-warning based on internet of things. Inf Syst Front, 17(2): 321–335
https://doi.org/10.1007/s10796-013-9466-1
19 Fassnacht S R ,  Cherry M L ,  Venable N B H ,  Saavedra F  (2016). Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere, 10(1): 329–339
https://doi.org/10.5194/tc-10-329-2016
20 Fassnacht S R ,  Derry J E  (2010). Defining similar regions of snow in the Colorado River Basin using self-organizing maps. Water Resour Res, 46(4): W04507
https://doi.org/10.1029/2009WR007835
21 Fassnacht S R ,  Hultstrand M  (2015). Snowpack variability and trends at long-term stations in northern Colorado, USA. International Association of Hydrological Sciences, 92: 1–6 
https://doi.org/10.5194/piahs-92-1-2015
22 Fassnacht S R ,  Williams S R ,  Corrao M V  (2009). Changes in the surface roughness of snow from millimetre to metre scales. Ecol Complex, 6(3): 221–229
https://doi.org/10.1016/j.ecocom.2009.05.003
23 Flint A L, Flint  L E, Dettinger  M D (2008). Modeling soil moisture processes and recharge under a melting snowpack. Vadose Zone J, 7(1): 350–357
https://doi.org/10.2136/vzj2006.0135
24 Granlund N, Lundberg  A, Feiccabrino J ,  Gustafsson D  (2009). Laboratory test of snow wetness influence on electrical conductivity measured with ground penetrating radar. Hydrol Res, 40(1): 33–44
https://doi.org/10.2166/nh.2009.040
25 Graybeal D, Leathers  D (2006). Snowmelt-related flood risk in Appalachia: first estimates from a historical snow climatology. J Appl Meteorol Climatol, 45(1): 178–193
https://doi.org/10.1175/JAM2330.1
26 Gusmeroli A, Grosse  G (2012). Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska. Cryosphere, 6(6): 1435–1443
https://doi.org/10.5194/tc-6-1435-2012
27 Harpold A, Brooks  P, Rajagopal S ,  Heidbuchel I ,  Jardine A ,  Stielstra C  (2012). Changes in snowpack accumulation and ablation in the intermountain west. Water Resour Res, 48(11): W11501
https://doi.org/10.1029/2012WR011949
28 Harpold A A, Biederman  J A, Condon  K, Merino M ,  Korgaonkar Y ,  Nan T, Sloat  L L, Ross  M, Brooks P D  (2014). Changes in snow accumulation and ablation following the Las Conchas Forest Fire, New Mexico, USA. Ecohydrology, 7(2): 440–452
https://doi.org/10.1002/eco.1363
29 Harpold A A, Molotch  N P, Musselman  K N, Bales  R C, Kirchner  P B, Litvak  M, Brooks P D  (2015). Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrol Processes, 29(12): 2782–2798
https://doi.org/10.1002/hyp.10400
30 Heilig A, Mitterer  C, Schmid L ,  Wever N ,  Schweizer J ,  Marshall H P ,  Eisen O  (2015). Seasonal and diurnal cycles of liquid water in snow-Measurements and modeling. J Geophys Res Earth Surf, 120(10): 2139–2154
https://doi.org/10.1002/2015JF003593
31 Heilig A, Schneebeli  M, Eisen O  (2009). Upward-looking ground-penetrating radar for monitoring snowpack stratigraphy. Cold Reg Sci Technol, 59(2‒3): 152–162
https://doi.org/10.1016/j.coldregions.2009.07.008
32 Jencso K, McGlynn  B, Gooseff M ,  Wondzell S ,  Bencala K ,  Marshall L  (2009). Hydrologic connectivity between landscapes and streams: transferring reach-and plot-scale understanding to the catchment scale. Water Resour Res, 45(4): W04428
https://doi.org/10.1029/2008WR007225
33 Jencso K G, McGlynn  B L (2011). Hierarchical controls on runoff generation: topographically driven hydrologic connectivity, geology, and vegetation. Water Resour Res, 47(11): W11527
https://doi.org/10.1029/2011WR010666
34 Johnson J B, Schaefer  G L (2002). The influence of thermal, hydrologic, and snow deformation mechanisms on snow water equivalent pressure sensor accuracy. Hydrol Processes, 16(18): 3529–3542
https://doi.org/10.1002/hyp.1236
35 Litaor M I, Williams  M, Seastedt T R  (2008). Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J Geophys Res, 113(G2): G02008
https://doi.org/10.1029/2007JG000419
36 Liu F, Williams  M W, Caine  N (2004). Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resour Res, 40(9): W09401
https://doi.org/10.1029/2004WR003076
37 López-Moreno J ,  Fassnacht S ,  Heath J ,  Musselman K ,  Revuelto J ,  Latron J ,  Moran-Tejeda E ,  Jonas T  (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: implications for estimating snow water equivalent. Adv Water Resour, 55: 40–52
https://doi.org/10.1016/j.advwatres.2012.08.010
38 López-Moreno J I ,  Fassnacht S R ,  Beguería S ,  Latron J B P  (2011). Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. Cryosphere, 5(3): 617–629
https://doi.org/10.5194/tc-5-617-2011
39 López-Moreno J I ,  Latron J  (2008). Influence of canopy density on snow distribution in a temperate mountain range. Hydrol Processes, 22(1): 117–126
https://doi.org/10.1002/hyp.6572
40 Lundberg A, Ala-Aho  P, Eklo O ,  Klove B ,  Kvaerner J ,  Stumpp C  (2016). Snow and frost: implications for spatiotemporal infiltration patterns–A review. Hydrol Processes, 30(8): 1230–1250
https://doi.org/10.1002/hyp.10703
41 Lundberg A, Richardson-Naslund  C, Andersson C  (2006). Snow density variations: consequences for ground-penetrating radar. Hydrol Processes, 20(7): 1483–1495
https://doi.org/10.1002/hyp.5944
42 Lundquist J, Cayan  D (2002). Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States. J Hydrometeorol, 3(5): 591–603
https://doi.org/10.1175/1525-7541(2002)003<0591:SASPID>2.0.CO;2
43 Lundquist J, Dettinger  M, Cayan D  (2005). Snow-fed streamflow timing at different basin scales: case study of the Tuolumne River above Hetch Hetchy, Yosemite, California. Water Resour Res, 41(7): W07005
https://doi.org/10.1029/2004WR003933
44 Magnusson J, Kobierska  F, Huxol S ,  Hayashi M ,  Jonas T ,  Kirchner J W  (2014). Melt water driven stream and groundwater stage fluctuations on a glacier forefield (Dammagletscher, Switzerland). Hydrol Processes, 28(3): 823–836
https://doi.org/10.1002/hyp.9633
45 McNamara J P, Chandler  D, Seyfried M ,  Achet S  (2005). Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment. Hydrol Processes, 19(20): 4023–4038
https://doi.org/10.1002/hyp.5869
46 Mitterer C, Heilig  A, Schweizer J ,  Eisen O  (2011). Upward-looking ground-penetrating radar for measuring wet-snow properties. Cold Reg Sci Technol, 69(2‒3): 129–138
https://doi.org/10.1016/j.coldregions.2011.06.003
47 Moeser D, Mazzotti  G, Helbig N ,  Jonas T  (2016). Representing spatial variability of forest snow: implementation of a new interception model. Water Resour Res, 52(2): 1208–1226
https://doi.org/10.1002/2015WR017961
48 Molotch N P, Brooks  P D, Burns  S P, Litvak  M, Monson R K ,  McConnell J R ,  Musselman K  (2009). Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology, 2(2): 129–142
https://doi.org/10.1002/eco.48
49 Molotch N P, Colee  M T, Bales  R C, Dozier  J (2005). Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection. Hydrol Processes, 19(7): 1459–1479
https://doi.org/10.1002/hyp.5586
50 Molotch N P, Meromy  L (2014). Physiographic and climatic controls on snow cover persistence in the Sierra Nevada Mountains. Hydrol Processes, 28(16): 4573–4586
https://doi.org/10.1002/hyp.10254
51 Musselman K N ,  Molotch N P ,  Brooks P D  (2008). Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrol Processes, 22(15): 2767–2776
https://doi.org/10.1002/hyp.7050
52 Musselman K N ,  Molotch N P ,  Margulis S A ,  Kirchner P B ,  Bales R C  (2012). Influence of canopy structure and direct beam solar irradiance on snowmelt rates in a mixed conifer forest. Agric Meteorol, 161: 46–56
https://doi.org/10.1016/j.agrformet.2012.03.011
53 Mutzner R, Weijs  S, Tarolli P ,  Calaf M ,  Oldroyd H ,  Parlange M  (2015). Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment. Water Resour Res, 51(5): 3403–3418
https://doi.org/10.1002/2014WR016581
54 Previati M, Godio  A, Ferraris S  (2011). Validation of spatial variability of snowpack thickness and density obtained with GPR and TDR methods. J Appl Geophys, 75(2): 284–293
https://doi.org/10.1016/j.jappgeo.2011.07.007
55 Rice R, Bales  R C, Painter  T H, Dozier  J (2011). Snow water equivalent along elevation gradients in the Merced and Tuolumne River basins of the Sierra Nevada. Water Resour Res, 47(8): W08515
https://doi.org/10.1029/2010WR009278
56 Richer E E, Kampf  S K, Fassnacht  S R, Moore  C C (2013). Spatiotemporal index for analyzing controls on snow climatology: application in the Colorado Front Range. Phys Geogr, 34(2): 85–107
57 Schmid L, Koch  F, Heilig A ,  Prasch M ,  Eisen O ,  Mauser W ,  Schweizer J  (2015). A novel sensor combination (upGPR-GPS) to continuously and nondestructively derive snow cover properties. Geophys Res Lett, 42(9): 3397–3405
https://doi.org/10.1002/2015GL063732
58 Sexstone G A, Fassnacht  S R (2014). What drives basin scale spatial variability of snowpack properties in northern Colorado? Cryosphere, 8(2): 329–344
https://doi.org/10.5194/tc-8-329-2014
59 Seyfried M S, Grant  L E, Marks  D, Winstral A ,  McNamara J  (2009). Simulated soil water storage effects on streamflow generation in a mountainous snowmelt environment, Idaho, USA. Hydrol Processes, 23(6): 858–873
https://doi.org/10.1002/hyp.7211
60 Singh K K, Datt  P, Sharma V ,  Ganju A ,  Mishra V D ,  Parashar A ,  Chauhan R  (2011). Snow depth and layer interface estimation using Ground Penetrating Radar. Curr Sci, 100(10): 1532–1539
61 Sommerfeld R A ,  Bales R C ,  Mast A (1994). Spatial statistics of snowmelt flow-data from lysimeters and aerial Photos. Geophys Res Lett, 21(25): 2821–2824
https://doi.org/10.1029/94GL02493
62 Staples J M, Adams  E E, Slaughter  A E, McKittrick  L R (2006). Slope scale modeling of snow surface temperature in topographically complex terrain. In: Proceedings of 2006 International Snow Science Workshop: 806–814
63 Storck P, Lettenmaier  D P, Bolton  S M (2002). Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States. Water Resour Res, 38(11): 1223
https://doi.org/10.1029/2002WR001281
64 USGS (2015). 3DEP products and services: The national Map, 3D Elevation Program Web page. accessed (November, 2015), edited, 
65 Varhola A, Coops  N C, Weiler  M, Moore R D  (2010). Forest canopy effects on snow accumulation and ablation: an integrative review of empirical results. J Hydrol (Amst), 392(3-4): 219–233
https://doi.org/10.1016/j.jhydrol.2010.08.009
66 Webb R W, Fassnacht  S R (2016). Snow density, snow depth, and soil moisture at Dry Lake study site in northern Colorado in 2014. Colorado State University, 
https://doi.org/10.1594/PANGAEA.864254
67 Webb R W, Fassnacht  S R, Gooseff  M N (2015). Wetting and drying variability of the shallow subsurface beneath a snowpack in California’s Southern Sierra Nevada. Vadose Zone J, 14(8): doi: 10.2136/vzj2014.12.0182
68 Williams C J, McNamara  J P, Chandler  D G (2009a). Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain. Hydrol Earth Syst Sci, 13(7): 1325–1336
https://doi.org/10.5194/hess-13-1325-2009
69 Williams M W, Seibold  C, Chowanski K  (2009b). Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response, Niwot Ridge, Colorado. Biogeochemistry, 95(1): 77–94
https://doi.org/10.1007/s10533-009-9288-x
70 Williams M W, Sommerfeld  R, Massman S ,  Rikkers M  (1999). Correlation lengths of meltwater flow through ripe snowpacks, Colorado Front Range, USA. Hydrol Processes, 13(12–13): 1807–1826
https://doi.org/10.1002/(SICI)1099-1085(199909)13:12/13<1807::AID-HYP891>3.0.CO;2-U
71 Winkler R D, Spittlehouse  D L, Golding  D L (2005). Measured differences in snow accumulation and melt among clearcut, juvenile, and mature forests in southern British Columbia. Hydrol Processes, 19(1): 51–62
https://doi.org/10.1002/hyp.5757
72 Zhao Q, Liu  Z, Ye B ,  Qin Y, Wei  Z, Fang S  (2009). A snowmelt runoff forecasting model coupling WRF and DHSVM. Hydrol Earth Syst Sci, 13(10): 1897–1906
https://doi.org/10.5194/hess-13-1897-2009
[1] S.R. FASSNACHT, J.I. LÓPEZ-MORENO. Patterns of trends in niveograph characteristics across the western United States from snow telemetry data[J]. Front. Earth Sci., 2020, 14(2): 315-325.
[2] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[3] S.R. FASSNACHT, J.I. LÓPEZ-MORENO, C. MA, A.N. WEBER, A.K.D. PFOHL, S.K. KAMPF, M. KAPPAS. Spatio-temporal snowmelt variability across the headwaters of the Southern Rocky Mountains[J]. Front. Earth Sci., 2017, 11(3): 505-514.
[4] Christine E. WEHNER, John D. STEDNICK. Effects of mountain pine beetle-killed forests on source water contributions to streamflow in headwater streams of the Colorado Rocky Mountains[J]. Front. Earth Sci., 2017, 11(3): 496-504.
[5] Ellen WOHL. The significance of small streams[J]. Front. Earth Sci., 2017, 11(3): 447-456.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed