Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (2) : 311-324    https://doi.org/10.1007/s11707-017-0679-3
RESEARCH ARTICLE
Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models
Bilaşco ŞTEFAN1,2, Roşca SANDA1(), Fodorean IOAN1, Vescan IULIU1, Filip SORIN1, Petrea DĂNUŢ1
1. Faculty of Geography, "Babeş-Bolyai" University, 400006 Cluj-Napoca, Romania
2. Romanian Academy Cluj-Napoca Subsidiary Geography Section, 400015 Cluj-Napoca, Romania
 Download: PDF(12247 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes – landslides and soil erosion – which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.

Keywords risk evaluation      spatial analysis      GIS modeling      soil erosion      landslides      spatial planning     
Corresponding Author(s): Roşca SANDA   
Just Accepted Date: 10 November 2017   Online First Date: 26 December 2017    Issue Date: 09 May 2018
 Cite this article:   
Bilaşco ŞTEFAN,Roşca SANDA,Fodorean IOAN, et al. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models[J]. Front. Earth Sci., 2018, 12(2): 311-324.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0679-3
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I2/311
Fig.1  Geographical position of the study area.
No. Database name Type Structure Attribute Origin Level of modeling
1 DEM Raster GRID Altitude (m) Primary Model level I
(USLE)
2 Cover management Vector
Raster
Polygon
GRID
Land use type
Cover management factor
Primary
Derived
3 Slope length Raster GRID Slope angle (%) Modeled
4 Soil Vector
Raster
Polygon
GRID
Type
Soil erodibility factor
Primary
Derived
5 Slope length Raster GRID Length (m) Modeled
6 Erosion value Raster GRID Soil loss t/ha/year Modeled
7 Hypsometry Raster GRID Altitude (m) Primary Model level I
(LANDSLIDES)
8 Slope Raster GRID Slope angle (%) Modeled
9 Aspect Raster GRID Aspect (8 direction) Modeled
10 Drainage density Raster GRID Density (m/kmp) Modeled
11 Depth Raster GRID Depth (m) Modeled
12 Wetness index Raster GRID Value Modeled
13 Stream power index Raster GRID Value Modeled
14 Profile curvature Raster GRID Value Modeled
15 Plan curvature Raster GRID Value Modeled
16 Landslide probability Raster GRID Value (0 – 0.57) Modeled
17 Cumulative probability Raster
Vector
GRID
Polygon
Classes (0–5) Modeled Model level II
(cumulative probability)
18 Land use Vector Polygon Land use type Primary Model level III
(RISK EVALUATION)
19 Vulnerability Vector Polygon Surface of cumulative probability/Land use Modeled
20 Exposure Vector Polygon Surface Modeled
21 Risk Vector Polygon Surface
Price/m2
Reduction coefficient
Modeled
Tab.1  Database structure
Fig.2  Methodological flow chart of risk evaluation (where SAM – spatial analysis model, SAE – spatial analysis equation and 1,2,3–model ,evel).
Fig.3  Soil erosion vulnerability map.
Fig.4  Landslide vulnerability map.
Territorial Administrative Units Vulnerability classes/km2
Low Medium Medium–High High Very high
ESV LV ESV LV ESV LV ESV LV ESV LV
Remeţi 59.7 329 1.89 46.65 0.36 13 0.12 0.04 0.29 0
Campulung la Tisa 29.69 3.67 1.65 27.42 0.22 0.92 0.08 0 0.09 0
Săpânţa 128.1 5.44 4.61 73.29 0.74 55.59 0.3 0.18 0.44 0
Sarasău 16.52 2.26 1.14 15.39 0.19 0.79 0.06 0 0.1 0
Bocicoiu Mare 23.51 4.13 1.34 19.97 0.23 1.52 0.08 0.01 0.14 0
Repedea 105.44 0.02 4.12 17.3 0.94 90.87 0.27 3.16 0.36 0
Poienile de sub Munte 252.83 0 14.11 46.09 3.84 221.53 1.49 7 2.16 0
Sighetu Marmaţiei 120.16 7.11 6.07 95.64 1 25.92 0.34 0 0.62 0
Rona de Jos 20.81 0.65 0.69 17.89 0.08 3.12 0.03 0 0.05 0
Rona de Sus 57.61 0.71 2.1 38.13 0.31 21.52 0.11 0 0.22 0
Bistra 112.22 0.73 6.82 29.28 1.39 87.49 0.48 4.2 0.64 0
Vadu Izei 15.47 1.41 0.47 11.17 0.1 3.5 0.03 0 0.02 0
Oncesti 17.61 1.63 1.43 14.54 0.21 3.23 0.07 0 0.08 0
Petrova 37.15 2.64 2.04 29.63 0.29 7.4 0.1 0.02 0.11 0
Giuleşti 68.4 3.54 5.78 55.99 0.95 16.38 0.31 0 0.47 0
Vişeu de Sus 395.05 0.47 14.64 76.72 4.41 331.24 1.55 10.5 2.31 0
Bârsana 62.99 2.4 4.71 47.16 0.72 19.3 0.22 0 0.22 0
Ruscova 37.48 0.23 1.04 17.43 0.13 20.75 0.06 0.36 0.07 0
Ocna Şugatag 79.85 0.86 4.93 58.62 0.92 27.1 0.34 0.02 0.56 0
Călineşti 58.1 2.39 3.24 50.16 0.48 9.66 0.16 0 0.22 0
Strâmtura 79.15 0.82 6.55 57.05 1.25 29.89 0.39 0.06 0.47 0
Deseşti 128.01 0.28 5.26 70.9 0.9 63.48 0.3 0.23 0.44 0
Leordina 26.48 1.01 1.53 16.27 0.3 11.26 0.09 0 0.14 0
Vişeu de Jos 47.06 0.25 3.97 18.39 0.85 33.63 0.27 0.3 0.42 0
Budeşti 73.93 0.02 5.13 42.32 0.85 38.17 0.25 0.11 0.46 0
Rozavlea 37.57 1.72 2.26 24.98 0.39 13.8 0.12 0 0.16 0
Bogdan Vodă 29.65 0.78 2.05 21.05 0.39 10.55 0.13 0 0.15 0
Şieu 18.42 0.75 1.49 15.7 0.17 3.76 0.06 0 0.06 0
Borşa 354.13 0 28.51 107.62 9.73 285.42 3.7 8.64 5.3 0
Poienile Izei 14.4 0 0.73 9.01 0.11 6.3 0.03 0 0.04 0
Ieud 68.28 0.5 2.89 41.51 0.39 29.39 0.12 0.45 0.17 0
Saliştea de Sus 60.81 0.06 3.64 30.99 0.43 34.09 0.14 0.09 0.21 0
Botiza 66.76 0.01 2.89 29.75 0.44 40.01 0.13 0.63 0.18 0
Moisei 98.29 0 7.06 30.38 1.43 75.06 0.52 2.66 0.81 0
Dragomireşti 90.91 0.25 3.07 34.29 0.65 60.09 0.27 0.66 0.38 0
Săcel 70.45 0 6.27 31.7 1.18 46.84 0.4 0.35 0.59 0
Tab.2  Comparative analysis using a quantitative basis for the extent of vulnerability classes to soil erosion (ESV) and landslides (LV) in the UAT
Land type Price Territorial Administrative Units (TAU.)
RON/m2 EURO/m2
Build-up area 159 35.333 Sighetu Marmaţiei
100 22.222 Borşa, Vişeul de Sus
42 9.333 Moisei, Vişeul de Jos, Ruscova, Petrova, Leordina
36 8.000 Săliştea de Sus, Dragomireşti, Bistra, Repedea, Poienile de Sub Munte
24 5.333 Deseşti, Giuleşti, Vadu Izei, Onceşti, Bârsana, Bocicoiu Mare, Rona de Sus, Rona de Jos, Ocna Şugatag, Budeşti, Călineşti, Câmpulung la Tisa, Sarasău, Săpânţa, Remeţi
Out-of-town land
Arable 3.18 0.707 Sighetu Marmaţiei
3.13 0.696 Vişeul de Sus, Borşa
1.30 0.289 Dragomireşti, Săliştea de Sus
0.52 0.116 Moisei, Vişeul de Jos, Ruscova, Petrova, Leordina
0.45 0.100 Bistra, Repedea, Poienile de Sub Munte, Deseşti, Giuleşti, Vadu Izei, Onceşti, Bârsana, Bocicoiu Mare, Rona de Sus, Rona de Jos, Ocna Şugatag, Budeşti, Călineşti, Câmpulung la Tisa, Sarasău, Săpânţa, Remeţi
Orchards and vineyards 2.78 0.618 Sighetu Marmaţiei
2.50 0.556 Vişeul de Sus, Borşa
1.14 0.253 Dragomireşti, Săliştea de Sus
0.42 0.093 Moisei, Vişeul de Jos, Ruscova, Petrova, Leordina
0.36 0.080 Bistra, Repedea, Poienile de Sub Munte, Deseşti, Giuleşti, Vadu Izei, Onceşti, Bârsana, Bocicoiu Mare, Rona de Sus, Rona de Jos, Ocna Şugatag, Budeşti, Călineşti, Câmpulung la Tisa, Sarasău, Săpânţa, Remeţi
Forest 2.39 0.531 Sighetu Marmaţiei
1.35 0.300 Vişeul de Sus, Borşa
1.04 0.231 Moisei, Vişeul de Jos, Ruscova, Petrova, Leordina, Bistra, Repedea, Poienile de Sub Munte
0.98 0.218 Dragomireşti, Săliştea de Sus
0.27 0.060 Deseşti, Giuleşti, Vadu Izei, OnceVti, Bârsana, Bocicoiu Mare, Rona de Sus, Rona de Jos, Ocna Şugatag, Budeşti, Călineşti, Câmpulung la Tisa, Sarasău, Săpânţa, Remeţi
Pastures 1.67 0.371 Vişeul de Sus, Borşa
1.59 0.353 Sighetu Marmaţiei
0.65 0.144 Dragomireşti, Săliştea de Sus
0.21 0.047 Moisei, Vişeul de Jos, Ruscova, Petrova, Leordina
0.18 0.040 Bistra, Repedea, Poienile de Sub Munte, Deseşti, Giuleşti, Vadu Izei, Onceşti, Bârsana, Bocicoiu Mare, Rona de Sus, Rona de Jos, Ocna Şugatag, Budeşti, Călineşti, Câmpulung la Tisa, Sarasău, Săpânţa, Remeţi
Other categories / non-productive 0.88 0.196 Sighetu Marmaţiei
0.42 0.093 Vişeul de Sus, Borşa
0.33 0.073 Dragomireşti, Săliştea de Sus
0.10 0.022 Moisei, Vişeul de Jos, Ruscova, Petrova, Leordina
0.09 0.020 Bistra, Repedea, Poienile de Sub Munte, Deseşti, Giuleşti, Vadu Izei, Onceşti, Bârsana, Bocicoiu Mare, Rona de Sus, Rona de Jos, Ocna Şugatag, Budeşti, Călineşti, Câmpulung la Tisa, Sarasău, Săpânţa, Remeţi
Tab.3  Buy-sell value/land categories/TAU (Territorial Administrative Units)
Land use classes Cumulated probability classes
P.VH P.H P.MH P.M P.L
Watercourses 5 5 5 5 5
Orchards 2 4 4 5 5
Swamps 5 5 5 5 5
Coniferous forests 2 2 3 3 4
Broad-leaved forests 2 3 3 3 4
Mixed forests 2 2 3 3 4
Secondary pastures 1 2 3 3 3
Urban and rural area 1 1 1 1 2
Non-irrigated arable land 1 1 1 2 2
Agricultural land and natural vegetation 1 2 2 3 4
Industrial and trading units 1 1 1 4 4
Complex cultures 1 1 2 3 3
Deforested areas 1 1 2 2 3
Scarce vegetation areas 1 2 2 4 5
Waste dumps 1 2 3 4 5
Natural pastures 1 1 2 3 3
Rocky fields 5 5 5 5 5
Subalpine vegetation 1 1 2 2 3
Recreation areas 1 1 1 4 4
Mining areas 2 3 4 4 5
Tab.4  Matrix used for identifying the classes of risk exposure
Fig.5  Map of the cumulated risk classes.
Fig.6  Land market value in Maramureş Land.
Fig.7  Map of the risk calculated as financial loss.
Fig.8  Economic loss at the UAT level.
1 AGS (Australian Geomechanics Society Subcommitte on Landslide Risk Management) (2000). Landslide Risk Management Concepts and Guidelines. Australian Geomechanics, 35(1): 49–92
2 Armaş I (2011). An analytic multicriteria hierarchical approach to assess landslide vulnerability. Case study: Cornu Village, Subcarpathian Prahova Valley/Romania. Z Geomorphol, 55(2): 209–229
https://doi.org/10.1127/0372-8854/2011/0055-0040
3 Bilaşco Şt., Horvath C, Cocean P, Sorocovschi V, Oncu M (2009). Implementation of the USLE model using GIS techniques. Case study the Someşean Plateau. Carpath J Earth Environ Sci, 4(2): 123–132
4 Bilaşco Şt., Horvath C, Roşian G, Filip S, Keller I E (2011). Statistical model using GIS for the assessment of landslide susceptibility. Case-study: the Someş plateau. Rom Journ Geogr, 55(2): 91–101
5 Carrara A, Cardinali M, Guzzetti F (1992). Uncertainty in assessing landslide hazard and risk. ITC J, (2): 172–183
6 Corominas J (2008). Framework for Landslide Quantitative Risk Assessment. Intensive Course on QRA, Civil Engineering School of Barcelona, Technical University of Catalonia
7 Cutter S (2001). A research agenda for vulnerability and environmental hazards. IHDP Newsletter Update 2, Article 3
8 Dârja M, Budiu V, Tripon D, Păcurar I, Neag V (2002). Erosion by water and its impact on the enviroment. Cluj Napoca, Romania: Risoprint (in Romanian)
9 Fell R (1994). Landslide risk assessment and acceptable risk. Can Geotech J, 31(2): 261–272
https://doi.org/10.1139/t94-031
10 Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W (2008). Guidelines for landslide susceptibility, hazard, and risk zoning for land use planning. Eng Geol, 102(3–4): 85–98
https://doi.org/10.1016/j.enggeo.2008.03.022
11 Furtună P (2017). Temporal and spatial variation of forest coverage in Apuseni Matural Park, 2000–2014 period. Geographia Technica, 12(1): 46–56
https://doi.org/10.21163/GT_2017.121.05
12 Ilieş G (2007). Country of Maramures. Study of regional geography. Cluj Napoca: Presa Universitară Clujeană (in Romanian)
13 Ioniţă I (2000). Applied Geomorphology. Processes of degradation of hilly lands. Editura Univ. “Al. I. Cuza”, Iaşi: Al. I. Cuza Publishing House (in Romanian)
14 Long M H, John J I (1993). Risk-based Emergency Response. Paper presented at the ER93 conference on the practical approach to hazardous substances accidents. St. John, New Brunswick, Canada
15 Marzocchi W, Mastellone M L,Di Ruocco, Novelli A, Romeo P, Gasparini P (2009). Principle of multi-risk assessment, research performed in the frame of Na.R.As (Natural Risks Assessment) FP6 SSA Project No. 511264 Napoli, Italia
16 Micu M, Bălteanu D (2009). Landslide hazard assessment in the Curvature Carpathias and Subcarpathians, Romania. Z Geomorphol, 53(2): 31–47
https://doi.org/10.1127/0372-8854/2009/0053S3-0031
17 Mitasova H, Mitas L, Brown W M, Johnston D (1998). Multidimensional Soil Erosion/Deposition Modeling and Visualization Using GIS. Final report for USA CERL. University of Illinois, Urbana-Champaign. Online tutorial
18 Morgan R P C, Quinton J N, Smith R E, Govers G, Poesen J W A, Auerswald K, Cnisci G, Torri D (1998). The EUROSEM model. In: Boardman J B, Favis-Mortlock D, eds. Global Change: Modelling Soil Erosion by Water, NATO ASI series, Series 1: Global Environmental Change. London: Springer Verlag, 373–382
19 Moţoc M, Sevastel M (1979). Assessment of factors that determine the risk of water erosion in the surface. Bucureşti: Bren (in Romanian)
20 Moţoc M, Sevastel M (2002). Assessment of factors that determine the risk of water erosion in the surface. Bucureşti: Bren (in Romanian)
21 Moţoc M, Stănescu P, Luca Al, Popescu C N (1973). Instructions on the studies and calculations required to design soil erosion control work. Redacţia Revistelor Agricole, Bucureşti (in Romanian)
22 Moţoc M, Stănescu P, Taloescu I (1979). Current conception of the erosion phenomenon and its control. Bilbioteca Agricolă. Bucureşti (in Romanian)
23 Patriche C V, Căpăţână V, Stoica D (2006). Aspects regarding soil erosion spatial modeling using the USLE/RUSLE equation within GIS. Geographia Technica, 2: 87–97
24 Petrea D, Bilaşco Şt., Roşca S, Vescan I, Fodorean I (2014). The determination of the Landslide occurence probability by spatial analysis of the Land Morphometric characteristics (case study: the Transylvanian Plateau). Carpath J Environ Sci, 9: 91–110
25 Rădoane M, Rădoane N (2006). Applied Geomorphology. Suceava: Universităţii Pulishing House (in Romanian)
26 Roşca S (2015). Niraj Basin Study of Applied Geomorphology. Cuj Napoca: Risoprint (in Romanian)
27 Roşca S, Bilaşco Şt, Petrea D, Vescan I, Fodorean I (2016). Comparative assessment of landslide susceptibility. Case study: the Niraj river basin (Transylvania depression, Romania). Geomatics Nat Hazards Risk, 7(3): 1043–1064
https://doi.org/10.1080/19475705.2015.1030784
28 Roşca S, Bilaşco Şt, Petrea D, Vescan I, Fodorean I, Filip S (2015). Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania). Nat Hazards, 77: 1573
https://doi.org/10.1007/s11069-015-1665-2
29 Singh R, Phadke V S (2006). Assessing soil loss by water erosion in Jamni river basin, Bundelkhand region, India, adopting universal soil loss equation using GIS. Curr Sci, 90: 1431–1435
30 Varnes D J (1984). Landslide hazard zonation: a review of principales and practice. Paris: UNESCO
31 Wischmeier W H, Smith D D (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No.282, U.S. Dept. Agr., Washington, DC
[1] Lingling SHEN,Chong XU,Lianyou LIU. Interaction among controlling factors for landslides triggered by the 2008 Wenchuan, China Mw 7.9 earthquake[J]. Front. Earth Sci., 2016, 10(2): 264-273.
[2] Hao LIN, Bailang YU, Zuoqi CHEN, Yingjie HU, Yan HUANG, Jianping WU, Bin WU, Rong GE. A geospatial web portal for sharing and analyzing greenhouse gas data derived from satellite remote sensing images[J]. Front Earth Sci, 2013, 7(3): 295-309.
[3] Ni-Bin CHANG, Yu-Chi WENG. Short-term emergency response planning and risk assessment via an integrated modeling system for nuclear power plants in complex terrain[J]. Front Earth Sci, 2013, 7(1): 1-27.
[4] Changshun ZHANG, Gaodi XIE, Chunlan LIU, Chunxia LU. Assessment of soil erosion under woodlands using USLE in China[J]. Front Earth Sci, 2011, 5(2): 150-161.
[5] Zhaoling ZHANG, Shiliang LIU, Shikui DONG, Wei FU, Baoshan CUI, . Spatio-temporal analysis of different levels of road expansion on soil erosion distribution: a case study of Fengqing county, Southwest China[J]. Front. Earth Sci., 2009, 3(4): 389-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed