Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (2) : 344-359    https://doi.org/10.1007/s11707-019-0781-9
RESEARCH ARTICLE
Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China
Bing YANG1,2, Xionghua ZHANG1(), Wenkun QIE3, Yi WEI4, Xing HUANG3, Haodong XIA2
1. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
2. Cores and Samples Centre of Natural Resources, Langfang 065201, China
3. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
4. School of Safety Engineering, North China Institute of Science and Technology, Langfang 065201, China
 Download: PDF(16453 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An integrated study of biostratigraphy, microfacies, and stable carbon isotope stratigraphy was carried out on the late Famennian–early Asselian carbonates of the Long’an section in Guangxi, South China. Stable carbon isotope studies in the Long’an section have revealed four major positive shifts of δ13C values in the Carboniferous strata in South China. The first shift occurred in the Siphonodella dasaibaensia zone in the Tournaisian, with an amplitude of 4.19‰. The second shift occurred near the Visean/Serpukhovian boundary, with an amplitude of 2.63‰. The third shift occurred in the Serpukhovian, with an amplitude of 3.95‰. The fourth shift occurred in the Kasimovian, with an amplitude of 3.69‰. Furthermore, there were several brief positive δ13C shifts during the late Famennian to early Tournaisian. All of these shifts can be well correlated globally, and each corresponds to sea-level regressions in South China and Euro-America, indicating increases in ocean primary productivity and global cooling events. Chronologically, the four major positive excursions of δ13C, together with several brief positive δ13C shifts that were observed during the late Famennian to the early Tournaisian, correspond to the well-accepted Glacial I, II, and III events.

Keywords carbon isotopes      Late Paleozoic Ice Age      Carboniferous      sea-level changes      global climate variation     
Corresponding Author(s): Xionghua ZHANG   
Online First Date: 03 June 2020    Issue Date: 21 July 2020
 Cite this article:   
Bing YANG,Xionghua ZHANG,Wenkun QIE, et al. Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China[J]. Front. Earth Sci., 2020, 14(2): 344-359.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0781-9
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I2/344
Fig.1  Reconstruction map of Carboniferous paleogeography. (A1) (B1) The global Carboniferous paleogeographic reconstruction map, modified after Saltzman (2003); (A2) (B2) The Carboniferous lithofacies-paleogeography map of south China, modified after Feng et al. (1998).
Fig.2  Foraminifera from the upper Du’an Formation (beds 42–51). A. Janischewskina sp.; B. Koskinotextularia sp.; C. Earlandia vulgaris; D. Cribrospira panderi; E, H. Consobrinella consobrina; F. Palaeotextularia sp.; G. Eostaffella sp.; I. Mediocris breviscula; J. Forschia sp.; K. Cribrostomum sp.; L, Palaeotextularia gibbosa minima. (A–H, J–L Scale bars= 1 mm; I Scale bars= 0.5 mm).
Fig.3  Range chart showing stratigraphic distributions of fusulinids and biochronology in the Bashkirian through Asselian in the Long’an section.
Fig.4  Typical microfacies types and Outcrop photograph from the Long’an section. (a) Lime mudstone (Mf1), bed 19, Long’an Formation; (b) Chert nodules (Mf1), bed 30, Long’an Formation; (c) Oolitic Grainstone (Mf2), bed 45, Du’an Formation; (d) Bioclastic grainstone (Mf3), bed 73, Huanglong Formation; (e) Fenestral boundstone (Mf4), bed 46, Du’an Formation; (f) Calcareous algal boundstone (Mf5), bed 47, Du’an Formation. Legend: br—brachiopods; c—cavities; f—foraminifera; o—oncoids; fu—fusulinids; cr —crinoids; ca—calcareous algae; sc—siliceous conglomerations; os-ostracods.
Fig.5  Typical microfacies types from the Long’an section. (a) Bioclastic intraclast grainstone (Mf6), bed 52, Du’an Formation; (b) Bioclastic intraclast wackestone (Mf7), bed 67, Huanglong Formation; (c) Bioclastic packstone (Mf8), bed 3, Rongxian Formation; (d) Bioclastic wackestone (Mf9), bed 70, Huanglong Formation; (e) Dolomite limestone (Mf10), bed 27, Long’an Formation; (f) Dolomite (Mf11), bed 52, Du’an Formation. Legend: g—gastropods; cp—calcispheres; br—brachiopods; fu—fusulinids; cr —crinoids; ca—calcareous algae; os-ostracods.
Facies Microfacies Beds
Restricted platform facies Mf6, Mf9, Mf10, Mf11 27,34,35,36,46,54,55,56,58,59,
62,64,70,71,73,77
Open platform facies Mf6, Mf7, Mf8, Mf9 5,6,7,11,13,22,23,24,25,26,28,29,30,31,
32,34,37,38,39,41,44,51,55,57,61,63,64,
65,66,67,76,78
Tidal flat facies Mf4, Mf5 42,45,47,48
Platform margin sand shoal facies Mf2, Mf3 40,41,48,49,50,52,55,57,65,66,69,72,73,
74,75,78,79
Inner shelf facies Mf1 1,2,3,4,8,9,10,14,15,16,17,18,19,20,21,
30,33
Tab.1  Summary of the characteristics of the five major facies associations of the Long’an section
Fig.6  A comprehensive graph showing the lithological columnar chart of the Long’an section biozones and δ13C and δ18O variation curves. Among these biozones, the conodont zones were identified based on Qie et al., (2010, 2014, and 2015). These are shown in the graph as MFZ1= Lower Siphonodella praesulcata zone; MFZ2= Middle Siphonodella praesulcata zone; MFZ3= Upper Siphonodella praesulcata zone; MFZ4= Siphonodella homosimplex zone; MFZ5= Siphonodella sinensis zone; MFZ6= Siphonodella dasaibaensia zone; MFZ7= Polygnathus communis carina zone; MFZ8= Gnathodus cuneiformis zone; and MFZ9= Polygnathus communis porcatus zone. The fusulinid biozones: MFZ10= Pseudostaffella zone; MFZ11= Profusulinella zone; MFZ12= Fusulina-Fusulinella zone; MFZ13 = Triticites zone; MFZ14= Quasifusulina zone; and MFZ15= Pseudoschwagerina zone. LM-Lime mudstone. (blue areas represents negative shifts, pink areas represent for positive shifts)
Fig.7  δ13C and δ18O crossplots from different formations in the Long’an section (Wynn and Read, 2007).
Fig.8  A comprehensive graph showing the contrasts in the evolution of carbon isotope values among the Carboniferous system carbonates in the Long’an section in South China, the carbonates in Europe and North America (Buggisch et al., 2008), the mean values of carbon isotope values from calcite in brachiopod shells on the Russian platform and the US Mid-continent (Grossman et al., 2008), the carbon isotope values from calcite in brachiopod shells in western Europe and Moscow Basin (Bruckschen et al., 1999), the Kongshan area in Jiangsu, and the Naqing area of Guizhou (Buggisch et al., 2008), and the southern Nevada and Antler Highland (Saltzman and Thomas, 2012). The absolute age values are based on Cohen et al. (2013).
1 P Bruckschen, S Oesmann, J Veizer (1999). Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chem Geol, 161(1–3): 127–163
https://doi.org/10.1016/S0009-2541(99)00084-4
2 W Buggisch, M M Joachimski, G Sevastopulo, J R Morrow (2008). Mississippian δ13C carb and conodont apatite d18O records—their relation to the Late Palaeozoic Glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 273–292
https://doi.org/10.1016/j.palaeo.2008.03.043
3 W Buggisch, X D Wang, A S Alekseev, M M Joachimski (2011). Carboniferous–Permian carbon isotope stratigraphy of successions from China (Yangtze platform), USA (Kansas) and Russia (Moscow Basin and Urals). Palaeogeogr Palaeoclimatol Palaeoecol, 301(1–4): 18–38
https://doi.org/10.1016/j.palaeo.2010.12.015
4 M V Caputo (1985). Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol, 51(1–4): 291–317
https://doi.org/10.1016/0031-0182(85)90090-2
5 M V Caputo, J C Crowell (1985). Migration of glacial centers across Gondwana during Paleozoic Era. Geol Soc Am Bull, 96(8): 1020–1036
https://doi.org/10.1130/0016-7606(1985)96<1020:MOGCAG>2.0.CO;2
6 J T Chen, I P Montañez, Y P Qi, X D Wang, Q L Wang, W Lin (2016). Coupled sedimentary and d13C records of late Mississippian platform-to-slope successions from South China: insight into d13C chemostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 162–178
https://doi.org/10.1016/j.palaeo.2015.10.051
7 K M Cohen, S C Finney, P L Gibbard (2013). The ISC international chronostratigraphic chart. Episodes, 36: 199–204
8 J C Crowell (1978). Gondwana glaciation, cyclothems, continental positioning and climate change. Am J Sci, 278(10): 1345–1372
https://doi.org/10.2475/ajs.278.10.1345
9 M E Elrick, J F Read (1991). Cyclic ramp-to-basin carbonate deposits, Lower Mississippian, Wyoming, and Montana. J Sediment Petrol, 61: 1194–1224
10 Z Z Feng, Y Q Yang, Z D Bao (1998). Lithofacies Palaeogeography of the Carboiferous in South China. Beijing: Geological Publishing House
11 E Flügel (2010). Microfacies of Carbonate Rocks: Analisis, Interpretation and application. Berlin, Heidelberg: Springer-Verlag
12 L A Frakes, J E Francis, J I Syktus (1992). Climate Modes of the Phanerozoic. London: Cambridge University Press
13 E Garzanti, D Sciunnach (1997). Early Carboniferous onset of Gondwanian glaciation and Neo-tethyan rifting in South Tibet. Earth Planet Sci Lett, 148(1–2): 359–365
https://doi.org/10.1016/S0012-821X(97)00028-9
14 G González-Bonorino (1992). Carboniferous glaciation in Gondwana: evidence for grounded marine ice and continental glaciation in southwestern Argentina. Palaeogeogr Palaeoclimatol Palaeoecol, 91(3–4): 363–375
https://doi.org/10.1016/0031-0182(92)90077-I
15 E L Grossman, T E Yancey, T E Jones, P Bruckschen, B Chuvashov, S J Mazzullo, H Mii (2008). Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 222–233
https://doi.org/10.1016/j.palaeo.2008.03.053
16 X Huang, M Aretz, X H Zhang, Y S Du, W K Qie, Q Wen, C N Wang, T F Luan (2017). Pennsylvanian-early Permian palaeokarst development on the Yangtze Platform, South China, and implications for the regional sea-level history. Geol J, 53(4): 1241–1262
17 J D Hudson (1975). Carbon isotopes and limestone cement. Geology, 3(1): 19–22
https://doi.org/10.1130/0091-7613(1975)3<19:CIALC>2.0.CO;2
18 P E Isaacson, E Díaz-Martínez, G W Grader, J Kalvoda, O Babek, F X Devuyst (2008). Late Devonian-earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeogr Palaeoclimatol Palaeoecol, 268(3–4): 126–142
https://doi.org/10.1016/j.palaeo.2008.03.047
19 J L Isbell, M F Miller, K L Wolfe, P A Lenaker (2003). Timing of late Paleozoic glaciation in Gondwana: was glaciation responsible for the development of Northern hemisphere cyclothems? Spec Pap Geol Soc Am, 370: 5–24
20 G Jiang, M J Kennedy, N Christie-Blick (2003). Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 426(6968): 822–826
https://doi.org/10.1038/nature02201 pmid: 14685234
21 P B Kabanov, A S Alekseev, N B Gibshman, R R Gabdullin, A V Bershov (2016). The upper Viséan–Serpukhovian in the type area for the serpukhovian stage (Moscow Basin, Russia): part 1. sequences, disconformities, and biostratigraphic summary. Geol J, 51(2): 163–194
https://doi.org/10.1002/gj.2612
22 A J Kaufman, A H Knoll (1995). Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res, 73(1–4): 27–49
https://doi.org/10.1016/0301-9268(94)00070-8 pmid: 11539552
23 G D Kuang, J J Li, J Zhong, Y B Su, Y B Tao (1999). The Carboniferous in Guangxi. Wuhan: China University of Geosciences Press
24 J C Li, D Z Kuang, Z H Zhang, Z Y Hong (2011). Late Carboniferous–early Permian fusulinid biostratigraphy of Shunchang, Fujian province. Acta Micropalaeontologica Sin, 28(3): 309–315
25 R F Li, B P Liu, C L Zhao (1996). Characteristics of cycle-sequence, carbon isotope features and glacio-eustasy of the Triticites zone in southern Guizhou. Acta Sedimentologica Sinica, 70(4): 342–350
26 R F Li, B P Liu, C L Zhao (1997). Correlation of Carboniferous depositional sequences on the Yangtze plate with other on a global scale. Acta Sedimentologica Sinica, 15(3): 23–28
27 B P Liu, R F Li, D H You (1994). Carboniferous sequence stratigraphy and glacio-eustasy of Triticites zone in southern Guizhou, China. Earth Sci J China U, 19: 553–564
28 C G Liu, G R Li, D W Wang, Y L Liu, M X Luo, X M Shao (2016). Middle–Upper Ordovician (Darriwilian–Early Katian) positive carbon isotope excursions in the northern Tarim Basin, Northwest China: implications for stratigraphic correlation and paleoclimate. J Earth Sci, 27(2): 317–328
https://doi.org/10.1007/s12583-016-0696-2
29 C Liu, E Jarochowska, Y S Du, D Vachard, A Munnecke (2017). Stratigraphical and d13C records of Permo-Carboniferous platform carbonates, South China: responses to late Paleozoic icehouse climate and icehouse-greenhouse transition. Palaeogeogr Palaeoclimatol Palaeoecol, 474: 113–129
https://doi.org/10.1016/j.palaeo.2016.07.038
30 C M Lin, H F Ling, S J Wang, S Zhang (2002). Evolution regularities of carbon and oxygen isotopes in Carboniferous marina carbonate rocks from Jiangsu and Anhui provinces. Geochimica, 31(5): 415–423
31 O R López-Gamundí, L A Buatois (2010). Introduction: Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geol Soc Am Bull, 468: 5–8
32 M Magaritz, W T Holser, J L Kirschvink (1986). Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature, 320(6059): 258–259
https://doi.org/10.1038/320258a0
33 J D Marshall, P J Brenchley, P Mason, G A Wolff, R A Astini, L Hints, T Meidla (1997). Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 132(1–4): 195–210
https://doi.org/10.1016/S0031-0182(97)00063-1
34 D L Matchen, T W Kammer (2006). Incised valley fill interpretation for Mississippian Black Hand Sandstone, Appalachian Basin, USA: implications for glacial eustasy at Kinderhookian-Osagean (Tn2-Tn3) boundary. Sediment Geol, 191(1–2): 89–113
https://doi.org/10.1016/j.sedgeo.2006.02.002
35 Z L Ma, Y Wang, Q L Wang, Y Hoshiki, K Uene, Y P Qi, X D Wang (2013). Biostratigraphy of the Bashlirian-Moscovian boundary interval at Luokun section in Guizhou, South China. Acta Palaeontologica Sinic, 52(4): 492–502
36 M X Mei, Z Y Li (2004). Sequence-stratigraphic succession and sedimentary-basin evolution from late Paleozoic to Triassic in the Yunnan-Guizhou-Guangxi region. Geoscience, 18: 555–563
37 M X Mei, Y S Ma, J Deng, H M Chu, Z R Liu, H Zhang (2005). Carboniferous to Permian sequence stratigraphic framework of the Yunnan-Guizhou-Guangxi basin and its adjacent areas and global correlation of third-order sea-level change. Geology in China, 32: 13–24
38 H S Mii, E L Grossman, T E Yancey (1999). Carboniferous isotope stratigraphies of North America: implications for Carboniferous paleoceanography and Mississippian glaciation. Geol Soc Am Bull, 111(7): 960–973
https://doi.org/10.1130/0016-7606(1999)111<0960:CISONA>2.3.CO;2
39 H S Mii, E L Grossman, T E Yancey, B Chuvashov, A Egorov (2001). Isotopic records of brachiopod shells from the Russian Platform-evidence for the onset of mid-Carboniferous glaciation. Chem Geol, 175(1–2): 133–147
https://doi.org/10.1016/S0009-2541(00)00366-1
40 C Okuyucu (2013). Fusulinid zonation of the Late Moscovian-Early Sakmarian sequences from the Taurides, southern Turkey. Neues Jahrb Geol Palaontol Abh, 268(3): 237–258
https://doi.org/10.1127/0077-7749/2013/0328
41 Y Peng, Y B Peng, X G Lang, H Ma, K Huang, F Li, B Shen (2016). Marine carbon-sulfur biogeochemical cycles during the steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan basin, South China. J Earth Sci, 27(2): 242–254
https://doi.org/10.1007/s12583-016-0694-4
42 W K Qie, J S Liu, J T Chen, X Wang, H Mii, X Zhang, X Huang, L Yao, T J Algeo, G Luo (2015). Local overprints on the global carbonate d13C signal in Devonian–Carboniferous boundary successions of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 418: 290–303
https://doi.org/10.1016/j.palaeo.2014.11.022
43 W K Qie, X H Zhang, X F Cai, Y Zhang (2007). Geobiological processes and the formation of hydrocarbon source rocks in the Carboniferous-Early Permian glacial period in South China. Earth Sci J China U, 32(6): 803–810
44 W K Qie, X H Zhang, Y S Du, Y Zhang (2010). Lower Carboniferous carbon isotope stratigraphy in South China: implications for the Late Paleozoic glaciation. Sci China Earth Sci, 40(11): 1533–1542
45 W K Qie, X H Zhang, Y S Du, B Yang, W T Ji, G M Luo (2014). Conodont biostratigraphy of Tournaisian shallow-water carbonates in central Guangxi, South China. Geobios, 47(6): 389–401
https://doi.org/10.1016/j.geobios.2014.09.005
46 C A Ross, J R P Ross (1988). Late Paleozoic transgressive-regressive deposition. SEPM Special Publication, 42: 227–247
47 M C Rygel, C R Fielding, T D Frank, L P Birgenheier (2008). The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. J Sediment Res, 78(8): 500–511
https://doi.org/10.2110/jsr.2008.058
48 M R Saltzman, L A González, K C Lohmann (2000). Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology, 28(4): 347–350
https://doi.org/10.1130/0091-7613(2000)28<347:ECCSTB>2.0.CO;2
49 M R Saltzman (2002). Carbon and oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian–lower Osagean), western United States: implications for seawater chemistry and glaciation. Geol Soc Am Bull, 114(1):96–108
https://doi.org/10.1130/0016-7606(2002)114<0096:CAOISO>2.0.CO;2
50 M R Saltzman (2003). Late Paleozoic ice age: oceanic gateway or pCO2? Geology, 31(2): 151–154
https://doi.org/10.1130/0091-7613(2003)031<0151:LPIAOG>2.0.CO;2
51 M R Saltzman, E Thomas (2012). Carbon isotope stratigraphy. In: Gradstein F, Ogg J, Schmitz M, Ogg G, eds. The Geologic Time Scale 2012. Boston: Elsevier, 221–246
52 M R Saltzman, S A Young (2005). Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33(2): 109–112
https://doi.org/10.1130/G21219.1
53 J Shen, T J Algeo, Q Hu, N Zhang, L Zhou, W C Xia, S C Xie, Q L Feng (2012). Negative C isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology, 40(11): 963–966
https://doi.org/10.1130/G33329.1
54 Y K Shi, J R Liu, X N Yang, L M Zhu (2009). Fusulinid faunas from the Datangian to Chihsian strata of the Zongdi section in Ziyun county, Guizhou province. Acta Micropalaeontologica Sin, 26(1): 1–30
55 L B Smith, J F Read (2000). Rapid onset of late Paleozoic glaciation on Gondwana: evidence from Upper Mississippian strata of the Midcontinent, United States. Geology, 28(3): 279–282
https://doi.org/10.1130/0091-7613(2000)28<279:ROOLPG>2.0.CO;2
56 M Streel, M V Caputo, S Loboziak, J H G Melo (2000). Late Frasnian-Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth Sci Rev, 52(1–3): 121–173
https://doi.org/10.1016/S0012-8252(00)00026-X
57 K Ueno, N Hayakawa, T Nakazawa, Y Wang, X D Wang (2013). Pennsylvanian-Early Permian cyclothemic succession on the Yangtze carbonate platform, South China. Geol Soc Lond Spec Publ, 376(1): 235–267
https://doi.org/10.1144/SP376.5
58 J J Veever, C M Powell (1987). Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional C sequences in Euramerica. Geol Soc Am Bull, 98(4): 475–487
https://doi.org/10.1130/0016-7606(1987)98<475:LPGEIG>2.0.CO;2
59 J S Wang, G Q Jiang, S H Xiao, Q Li, Q Wei (2008). Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in South China. Geology, 36(5): 345–350
https://doi.org/10.1130/G24513A.1
60 X D Wang, W K Qie, Q Y Sheng, Y P Qi, Y Wang, Z T Liao, S Z Shen, K Ueno (2013). Carboniferous and Lower Permian sedimentological cycles and biotic events of South China. Geol Soc Lond Spec Publ, 376(1): 33–46
https://doi.org/10.1144/SP376.11
61 T C Wynn, J F Read (2007). Carbon-oxygen isotope signal of Mississippian slope carbonates, Appalachians, USA: a complex response to climate-driven fourth-order glacio-eustasy. Palaeogeogr Palaeoclimatol Palaeoecol, 256(3–4): 254–272
https://doi.org/10.1016/j.palaeo.2007.02.033
62 X N Yang (1989). The fusulinids zonation of Maping Formation in Yishan county, Guangxi autonomous region. Geoscience, 3(3): 297–307
63 L X Zhang, J P Zhou, J Z Sheng (2010). The Upper Carboniferous and Lower Permian Fusulinids from west Guizhou. Beijing: Science Press
64 J P Zhou (1991). Fusulinid zones from Maping Formation of Changmo, Longlin, Guangxi on Carboniferous–Permian boundary. Acta Palaeontologica Sin, 30(3): 396–409
[1] Kaixuan AN, Hanlin CHEN, Xiubin LIN, Fang WANG, Shufeng YANG, Zhixin WEN, Zhaoming WANG, Guangya ZHANG, Xiaoguang TONG. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level[J]. Front. Earth Sci., 2017, 11(4): 740-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed