Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (3) : 578-600    https://doi.org/10.1007/s11707-019-0807-3
RESEARCH ARTICLE
Trace elements of pyrite and S, H, O isotopes from the Laowan gold deposit in Tongbai, Henan Province, China: implications for ore genesis
Yuehua ZHAO1, Shouyu CHEN1,2(), Jianli CHEN3, Shuaiji WU1
1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
3. No. 1 Geological Exploration Institute, Henan Bureau of Geo-exploration and Mineral Development, Zhengzhou 450001, China
 Download: PDF(16119 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Laowan deposit is a large gold deposit in the Qinling-Dabie orogenic belt where pyrite is the main Au-bearing mineral phase. We present results from the occurrences of gold, trace elements and sulfur isotopes of pyrite, and hydrogen and oxygen isotopes of quartz and calcite to elucidate the sources of ore-forming fluid; the genesis of pyrite and the ore-forming process.

From field observations, five generations of pyrite are identified; one formed in a metamorphic-diagenetic epoch (PyI), and the others during four mineralization stages: 1) the coarse-grained pyrite-quartz stage (PyII), 2) the quartz and medium- to fine-grained pyrite stage (PyIII), 3) the polymetallic sulfide stage (PyIV), and 4) the carbonate-quartz stage (PyV). Gold mainly occurs in PyIII and PyIV. We find that Au, Ag, Pb, and Cu are incorporated into pyrite as micro-/nano-inclusions and that Co, Ni, As, and Se enter the pyrite lattice via isomorphous replacement.

The Co/Ni values and Se concentrations indicate that PyI formed from metamorphic hydrothermal fluids and that pyrites (PyII, PyIII, and PyIV) from the ore-forming stages typically reflect a hydrothermal genesis involving magmatic fluid.

The d34S values of PyI (1.45‰–2.09‰) are similar to that of plagioclase amphibole schist, indicating that S was primarily derived from wall rock, while those of PyII, PyIII, and PyIV (3.10‰–5.55‰) suggest that S was derived from the Guishanyan Formation and the Laowan granite. The four mineralization stages show a systematic decrease in dD (from −77.1‰ to −82.8‰, −84.7‰, and −102.7‰), while the δ18OH2O values showed a gradual decrease from 5.7 to 2.7‰, 1.0‰, and −1.3‰. These data show that the ore-forming fluid was similar to a mixture of magmatic and meteoric waters. Thus, we conclude that the Laowan gold deposit is related to magmatic-hydrothermal fluid.

Keywords pyrite      trace elements      S-H-O isotopes      genesis      Laowan gold deposit     
Corresponding Author(s): Shouyu CHEN   
Online First Date: 30 July 2020    Issue Date: 04 December 2020
 Cite this article:   
Yuehua ZHAO,Shouyu CHEN,Jianli CHEN, et al. Trace elements of pyrite and S, H, O isotopes from the Laowan gold deposit in Tongbai, Henan Province, China: implications for ore genesis[J]. Front. Earth Sci., 2020, 14(3): 578-600.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0807-3
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I3/578
Fig.1  Regional geological map of the Laowan gold belt (modified from Liu et al., 2011; Yang et al., 2014b). 1—Nanwan Formation; 2—Guishanyan Formation; 3—Kuanping Group; 4—Erlangping Group; 5—Qinling Group; 6—Xionger Group; 7—Tongbai metamorphic gneissic complex; 8—High pressure rock pile; 9—Diorite; 10—Granite; 11—Fault; 12—Gold-silver deposit; 13—Study areaF1—Youfangzhuang fault; F2—Waxuezi fault; F3—Zhuxia fault; F4—Laowan-Songpa fault (Gui-Mei fault); F5—Tongbai-Shangcheng fault; F6—Xincheng-Huangpi fault
Fig.2  Geological map of the Laowan gold deposit (modified after Kou et al., 2016).
Fig.3  Mineral geological map of (a) W10 exploration line and (b) 204 exploration line (after preliminary report of No. 1 Geological Exploration Institute Henan Bureau of Geo-exploration and Mineral Development).
Fig.4  Stages of mineralization and mineral paragenesis in the Laowan gold deposit.
Fig.5  Mineral assemblage characteristics of the Laowan gold deposit in different metallogenic stages. Metamorphic-diagenetic epoch: (a) plagioclase amphibole schist hand specimen (LW01); (b) irregularly shaped pyrites aggregates; (c) pyrites present mineral orientation. Mineralization Stage I: (d) milky, massive and barren quartz veins with little pyrite (LW02); (e) pyrites present star-like or spot-like distributions in milky quartz veins; (f) cubic pyrite crystals. Mineralization Stage II: (g) quartz vein, mainly consisting of quartz and fine-grained pyrite; (h) hand specimen of quartz and sulfides (LW03); (i) chalcopyrite in cracks or along the edges of pyrites; (j) anhedral pyrrhotite with a light rose color encloses the earlier pyrite; (k) chalcopyrite and electrum in the fissure of pyrite. Mineralization Stage III: (l) quartz vein (Stage II) coexisting with polymetallic sulfides (Stage III); (m) polymetallic sulfide ore hand specimen (LW04); (n) Pyrite is bordered by chalcopyrite, and chalcopyrite exists as inclusions in sphalerite; (o) sphalerite appears as irregular shapes and are intergrown with pyrite, galena and chalcopyrite and arsenopyrite; (p) chalcopyrite, galena, sphalerite and native gold are in the crack of pyrite. Mineralization Stage IV: (q) the early quartz veins (Stage I) cut by the latest barren calcite-quartz vein (Stage IV); (r) calcite hand specimen (LW05); (s) calcite with little pyrite; (t) calcite and quartz. Py-pyrite, Elc-electrum, Gn-galena, Sp-sphalerite, Ser-sericite, Qz-quartz, Gl-gold, Amp-amphibole, Apy-arsenopyrite, Ccp-chalcopyrite, Po-pyrrhotite, Cc-calcite.
Fig.6  The occurrence of visible gold. PyII: (h) oval gold inclusions in pyrite. PyIII: (a) gold inclusion in chalcopyrite; (b) and (c) gold inclusions in the boundaries of sulfides. PyIV: (d) gold in the fissure of pyrite; (e) and (f) gold in cracks of sulfides; (g) and (i) anhedral granular, acicular and flake gold inclusions. Gl – gold, Py – pyrite, Qz – quartz, Ccp – chalcopyrite, Gn – galena, Sp – sphalerite
Fig.7  SEM images of PyII. (a) and (b) electrum in PyII. Elc – electrum, Py – pyrite, Qz – quartz.
Fig.8  SEM images of PyIII. (a), (b) and (c) irregular electrum in PyIII. Elc – electrum, Py – pyrite, Qz – quartz, Ccp – chalcopyrite.
Fig.9  SEM images of PyIV. (a), (b) and (c) gold inclusions in PyIII. Gl – gold, Sp – sphalerite, Elc – electrum, Py – pyrite, Qz – quartz, Ccp – chalcopyrite.
Sample No. Type S Fe As Au Ag Cu Zn Pb Co Ni Ge Bi Ti
/wt% /wt% /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm
LW01-1 PyI 47.71 51.66 2988 0.04 0.19 2.4 0.5 14.6 1275 430 11.9 0.33 628
LW01-2 47.47 51.8 2415 0.1 2.4 3.7 0.42 28.2 194 159 11.6 2.6 11.1
LW01-3 45.69 53.91 1470 0.97 13.8 4.2 0.57 36.4 499 665 12 3.6 12.7
LW01-4 42.62 57.03 1636 0.15 0.09 5.5 0.69 8 690 907 11.6 0.18 11.1
LW02-1 PyII 41.06 58.74 218 11.2 49 22.3 0.08 279 342 39.1 13.2 37.2 8.9
LW02-2 39.28 60.43 806 16.5 53.5 11.8 0.68 188 123 748 15.2 8.1 8
LW02-3 42.86 57.01 409 6 19.5 4.2 0.19 61.9 44 67 14.2 7.2 10.2
LW02-4 42.06 57.67 761 96.3 337 29.4 0.3 282 163 245 12.7 16.4 8.9
LW02-5 42.45 57.29 965 14.1 56.9 41.5 0.06 263 23.8 227 13.6 11.3 9.4
LW02-6 44.54 55.22 539 10.8 33.3 98.3 0.18 364 83.6 548 11.3 18.3 8.6
LW02-7 40.82 58.9 324 47.8 125 30.3 0.01 734 80.9 176 12.4 30.4 7.3
LW02-8 44.98 54.72 592 24.2 80.5 162 1 744 206 201 10.8 32 10
LW03-1 PyIII 47.38 52.21 2534 0.77 9.2 120 0 88.8 83 23.4 13.6 1.5 10.5
LW03-2 44.36 54.72 2270 1159 1952 2568 1.6 199 97.2 44.6 13.4 3.3 7.1
LW03-3 45.44 54.26 2181 0.16 0.56 2.8 0 12.9 43.2 28.5 12.5 0.07 8.1
LW03-4 46.68 53 2077 0.3 2.2 3.6 0.54 57.1 39.3 27.3 12 0.82 8.4
LW03-5 47.72 51.86 812 19.6 21 1911 1.2 205 1.1 8.8 11.6 3.6 9.4
LW03-6 48.68 51.11 956 0.31 1.5 3.2 0.46 46.5 8.8 35.2 13.3 0.81 7.9
LW03-7 51.56 47.75 511 4.9 80.1 3616 1.7 160 12.5 18.5 10.5 5.8 9.6
LW03-8 50.24 49.67 175 1.7 9.5 3.4 0.44 26.4 76.2 4 11.4 1.4 8.9
LW03-9 52.34 46.78 532 8.1 132 7129 4.6 213 32.9 28.7 11.3 9.9 10.4
LW03-10 50.97 48.86 543 6.6 27.5 2.4 0 47.7 9.3 26.5 11.1 4.1 5.3
LW03-11 51.93 47.89 619 9.9 38.1 32.1 0.12 150 87 37.6 11.8 9.8 8.4
LW04-1 PyIV 53.58 45.85 673 4.9 90 2313 1.1 390 16.8 328 10.7 6.3 25.8
LW04-2 56.67 43.07 327 7.3 65.8 93 0.2 589 35.4 236 10.5 6.3 7.2
LW04-3 53.02 46.65 989 20.8 182 96.8 0.27 464 83.8 890 10.6 2.4 6.9
LW04-4 56.15 43.56 912 22.5 155 139 1.2 239 77 356 10.9 3.1 7.5
LW04-5 55.49 41.89 2302 10.6 279 3044 622 15221 3.3 77.3 9.6 19.9 5.7
LW04-6 57.56 40.57 1705 8.9 40.6 42.2 0.48 16392 0.98 41 11.2 16 6.5
LW04-7 55.64 43.9 1796 8.2 94.3 1116 0.84 603 0.4 34.9 10.9 2.8 8.2
LW04-8 59.97 39.79 980 2.5 14.6 33.8 0.13 124 25 297 10.1 1.1 8.5
LW04-9 57.92 41.77 2283 0.14 0.48 1.7 0 14.5 4.5 56.2 9.1 0.03 5.5
LW04-10 60.04 37.5 670 10.3 167 5437 14.9 16872 32.4 448 10 31.1 6.6
LW04-11 59.83 37.69 683 21.1 975 6715 1120 8797 164 305 9 48.3 3.8
LW04-12 60.48 38.65 188 4.1 42.9 807 2.4 5888 110 730 11.2 10.8 6
Sample No. Type Se Sb Co/Ni Mg Al Cr Tl Mn Sn Ba V W Zr
/ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm /ppm
LW01-1 PyI 9.9 0.3 2.97 32 69.2 5.5 0 0.4 0.67 0.41 0.5 0.29 0.36
LW01-2 0 0.84 1.22 41 709 5.3 0.03 2.1 11.6 1.9 0.27 0 0.05
LW01-3 18.5 0.25 0.75 45.4 124 9.4 0.05 0.66 14.5 0.73 0.1 0.01 0.13
LW01-4 4.4 0.11 0.76 9.6 39.6 28.8 0 1.2 1.2 0.52 0.21 0.04 0.08
LW02-1 PyII 0 9.6 8.75 0.59 5.6 3.8 0.03 0.65 0 0 0.19 0 0
LW02-2 3.1 5.2 0.16 0.39 2 3.5 0.05 0 0 0.21 0.04 0 0.01
LW02-3 12.5 3 0.66 0.22 2.6 3.4 0.06 0 0 0.14 0.01 0 0.08
LW02-4 14.8 9.3 0.67 0.69 2.1 1.2 0.03 2.2 0.25 0.56 0.03 0.01 0
LW02-5 20.5 10.6 0.1 0.13 43.8 3.9 0.05 0.11 0.46 0.12 0.02 0.01 0.03
LW02-6 20.8 12.8 0.15 0.42 1.4 0.43 0.02 1.7 0.35 0.11 0 0 0.02
LW02-7 3.7 13.9 0.46 1.5 10.4 8 0.04 0.06 0.06 0.04 0 0.25 0
LW02-8 13.2 22 1.02 2.9 1.9 0.83 0.08 4.6 0.44 0.53 0 0.13 0
LW03-1 PyIII 29.8 6.2 3.55 0.32 0 1.6 0 0.83 0.22 1.1 0 0 0.01
LW03-2 21.7 12.2 2.18 1.5 15.7 3.4 0.05 0 0.15 0.11 0.02 0 0.3
LW03-3 20.1 0.39 1.52 0.77 1.3 5.4 0.01 1.3 0.1 0 0.07 0 0
LW03-4 6.7 3.1 1.44 0.48 1.8 4.3 0 0 0.29 0.18 0 0.02 0.06
LW03-5 6.1 13.5 0.13 0.66 1.4 6.2 0.04 0 0.24 0.16 0 0 0.04
LW03-6 17.3 3.2 0.25 0.31 1.5 2.7 0.01 0.59 0.45 0.07 0.04 0.01 0.06
LW03-7 0 11.4 0.68 0 1.7 1.2 0.06 16.4 0 0.27 0.09 0.02 0
LW03-8 27.2 1.4 19.05 0 0.28 9.2 0 26.7 0.32 0 0.02 0 0
LW03-9 26.9 16.7 1.15 0.59 0.71 0.22 0.05 33.3 0 0.05 0.02 0.01 0.01
LW03-10 18.3 2.5 0.35 0.63 0.72 0 0 0.68 0.09 0.04 0.1 0.01 0.01
LW03-11 7.2 6.4 2.31 0 1 1.3 0.04 0.27 0.18 0 0.06 0.03 0.03
LW04-1 PyIV 12.9 14.4 0.05 2 20.3 4.3 0.04 3.6 0.38 0.06 0.18 4.3 0.05
LW04-2 24.3 17 0.15 0.85 1.8 0.25 0.04 0 0.13 0.17 0.05 0 0.01
LW04-3 5.7 8.6 0.09 1.3 5.6 1.4 0.04 0.32 0 0.06 0 0 0.01
LW04-4 41.9 9.3 0.22 1.4 13.5 19.3 0.03 0.8 1.2 0.06 0.05 0 0.01
LW04-5 0 2883 0.04 0.05 0.13 0 0.14 52.9 0 0.28 0.04 0.02 0
LW04-6 11.1 20 0.02 1.2 4.2 0.64 0.03 0 1.1 0.03 0 0.01 0.01
LW04-7 35.1 10.6 0.01 0.24 1.9 4.5 0.01 0.44 0.18 0.06 0 0 0.02
LW04-8 16 4.6 0.08 0.4 0.16 1.9 0.02 0 0.07 0.06 0 0 0
LW04-9 0 0.66 0.08 0.82 0.25 0.87 0 0 0.23 0 0.06 0.03 0.02
LW04-10 20.5 88.4 0.07 0.41 0.05 0.81 0.09 1.7 0.63 0.04 0.04 0 0.02
LW04-11 1.8 4808 0.54 0.48 0.74 0 0.2 2.5 0.55 0.42 0 0 0
LW04-12 26.75 13.8 0.15 0.51 2.7 6.5 0.03 0 0.66 0.1 0.04 0.01 0.03
Tab.1  LA-ICPMS analyses of selected pyrite grains from the Laowan gold deposit
Fig.10  Representative time-resolved depth profiles for pyrite analyzed in this study indicating the occurrences of gold and other major metal elements.
Fig.11  Binary plots of (a) Ag vs. Au, (b) As vs. Au, (c) Bi vs. Au, (d) Ni vs. Au, (e) Pb vs. Au, (f) Cu vs. Au, (g) Sb vs. Au, (h) Pb vs. Ag, (i) Bi vs. Ag, (j) Sb vs. Ag, (k) Ni vs. Co, (l) Zn vs. Cu in different pyrite types. The trace element concentrations are from Table 1.
Fig.12  Binary plots of Co/Ni vs. Au/Ag.
Fig.13  Correlation diagrams of Pb/Co and Au/Co, Ag/Co and Bi/Co ratios for all the LA-ICP-MS analyses showing good correlations. Correlation coefficients (R) are given in the figures.
Objects Samples d34S/‰ (n) Reference
Ore Pyrite 1.43.8 (4) Chen (2017)
Guishanyan Formation Whole rock 2.5 (1)
Laowan Granite Whole rock 3.7 (1)
Ore Pyrite 2.9–5.8 (17)
Ore Galena 1.9–4.4 (3)
Ore Sphalerite 3.3 (1)
Ore Chalcopyrite 4.9 (1)
Guishanyan Formation Pyrite 3.6–4.3 (5)
Ore Pyrite 2.9–6.0 (21) He and Wang (2005)
Ore Galena 1.69–2.69 (3)
Ore Sphalerite 3.33 (1)
Ore Chalcopyrite 4.9 (1)
Guishanyan Formation Pyrite 3.63–4.26 (5)
Guishanyan Formation Galena 2.78 (1)
Alterated rocks-quartz vein Pyrite 2.9–5.9 (29) Yang et al. (2014b)
Galena 1.7–2.8 (4)
Sphalerite 3.3 (1)
Chalcopyrite 4.9 (1)
Tab.2  Previous studies of d34S isotope characteristics in the Laowan gold deposit
Sample d34Spyrite/‰ T/°C δ34SH2S/‰
Ore Pyrite (PyI) 1.45 / /
2.09 / /
Pyrite (PyII) 3.49 337 2.42
3.40 337 2.33
3.10 337 2.03
4.21 337 3.14
Pyrite (PyIII) 5.17 256 3.74
5.48 256 4.05
4.43 256 3.00
5.55 256 4.12
Pyrite (PyIV) 4.12 225 2.51
3.87 225 2.26
4.04 225 2.43
3.95 225 2.34
4.02 225 2.41
Tab.3  d34S isotope characteristics of pyrites and fluid in the Laowan gold deposit
Fig.14  d34S of the pyrites in Laowan gold deposit.
Sample No. Mineral Stages of mineralization Homogenization temperature*/°C d18Omineral/‰ δ18OH2O/‰ δD H2O/‰
LWB-1-2 quartz I 337 11.8 6.1 −76.8
LWB-1-4 quartz 10.9 5.2 −77.4
Average 11.35 5.65 −77.1
LWB-2-1 quartz II 256 11 2.3 −85.6
LWB-2-5 quartz 11.8 3.1 −83
LWB-2-6 quartz 10.8 2.1 −79.4
LWB-2-11 quartz 11.8 3.1 −83.2
Average 11.35 2.65 −82.8
LWB-3-1 quartz III 225 10.8 0.6 −77.8
LWB-3-2 quartz 11.5 1.3 −86.3
LWB-3-3 quartz 11.4 1.2 −90
Average 11.23 1.03 −84.7
LWB-4-1 calcite IV 153 11 −0.9 −108.9
LWB-4-2 calcite 10.2 −1.7 −96.5
Average 10.6 −1.3 −102.7
Tab.4  H and O isotope characteristics of different stages of mineralization in the Laowan gold deposit
Fig.15  Plot of dD versus δ18OH2O for ore-forming fluids of the Laowan gold deposit (modified by Taylor, 1997). SMOW: standard mean ocean water.
1 A Bralia, G Sabatini, F Troja (1979). A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner Depos, 14(3): 353–374
https://doi.org/10.1007/BF00206365
2 L Chen, L J Dai, T J Wang, P Luo, G T Xia (2009). Geochemical characteristics and genesis of the Laowan gold deposit in Henan Province. Geosci, 23(2): 277–284
3 J L Chen (2017). Genesis and significance in ore prospecting of LaoWan gold deposit, Tongbai region, Henan Province. Dissertation for the Master’s Degree. Wuhan: China University of Geosciences (in Chinese)
4 G L Chou, Q Chen, J T Liu (1983). On mélange in the area of Xinyang-Tongbai. J. Changchun Institute Geol, (2): 47–56
5 R N Clayton, J R O'Neil, T K Mayeda (1972). Oxygen isotope exchange between quartz and water. J Geophys Res, 77(17): 3057–3067
https://doi.org/10.1029/JB077i017p03057
6 M L Coleman, T J Shepherd, J J Durham, J E Rouse, G R Moore (1982). Reduction of water with zinc for hydrogen isotope analysis. Anal Chem, 54: 993–995
https://doi.org/10.1021/ac00243a035
7 N J Cook, C L Ciobanu, J W Mao (2009). Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, north China craton (Hebei Province, China). Chem Geol, 264(1–4): 101–121
https://doi.org/10.1016/j.chemgeo.2009.02.020
8 N J Cook, P G Spry, F M Vokes (1998). Mineralogy and textural relationships among sulphosalts and related minerals in the Bleikvassli Zn–Pb–(Cu) deposit, Nordland, Norway. Miner Depos, 34(1): 35–56
https://doi.org/10.1007/s001260050184
9 L Ding, G X Wang (2014). The mineralization characteristic and analysis of the Laowan gold deposit in the Tongbai region, Henan. Geol Chem Mineral, 36(1): 13–23
10 L L Dong, B Wan, C Deng, K D Cai, W J Xiao (2018). An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: constraints from in situ oxygen-sulfur isotopes and geochronology. J Asian Earth Sci, 153: 412–424
https://doi.org/10.1016/j.jseaes.2017.07.044
11 Y P Dong, M F Zhou, G W Zhang, D W Zhou, L Liu, Q Zhang (2008). The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. J Asian Earth Sci, 32(5): 325–335
https://doi.org/10.1016/j.jseaes.2007.11.010
12 G S Fang, H Y Hou (2004). Geochemical characteristic of Laowan deposit in Tongbai, Henan Province. Hubei Geol & Miner Res, 18(2): 23–29
13 K Faure (2003). δD values of fluid inclusion water in quartz and calcite ejecta from active geothermal systems: do values reflect those of original hydrothermal water? Econ Geol, 98(3): 657–660
https://doi.org/10.2113/gsecongeo.98.3.657
14 H M Gao (1989). Preliminary summary of geological characteristics of Laowan gold deposit. Henan Geol, 7(1): 1–5
15 R J Goldfarb, R Ayuso, M L Miller, S W Ebert, E E Marsh, S A Petsel, L D Miller, D Bradley, C Johnson, W McClelland (2004). The Late Cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation. Econ Geol, 99(4): 643–671
https://doi.org/10.2113/gsecongeo.99.4.643
16 X L He, H E Wang (2005). The metallogenic relation between Laowan rock mass and Laowan gold belt in Tongbai County of Henan. Res Envi & Engin, 19(2): 70–75
17 Henan Geology and Mineral Bureau (1989). Regional Geology of Henan Province. Beijing: Geological Publishing House (in Chinese)
18 X K Hu, L Tang, S T Zhang, M Santosh, C J Spencer, Y Zhao, H W Cao, Q M Pei (2019). In situ trace element and sulfur isotope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geol Rev, 105: 123–136
https://doi.org/doi.org/10.1016/j.oregeorev.2018.12.019
19 Z Hu, W Zhang, Y Liu, S Gao, M Li, K Zong, H Chen, S Hu (2015). “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis. Anal Chem, 87(2): 1152–1157
https://doi.org/10.1021/ac503749k pmid: 25511501
20 M A Huerta-Diaz, J W Morse (1992). Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta, 56(7): 2681–2702
https://doi.org/10.1016/0016-7037(92)90353-K
21 S H Jiang, F J Nie, D H Fang, Y F Liu (2009). Geochronology and geochemical features of the main intrusive rocks in the Weishancheng area, Tongbai County, Henan. Acta Geol Sin, 83(7): 1011–1029
22 N Koglin, H E Frimmel, W E Lawrie Minter, H Brätz (2010). Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner Depos, 45(3): 259–280
https://doi.org/10.1007/s00126-009-0272-0
23 S L Kou (2016). Geology and ore-forming fluid geochemistry of the Shangshanghe segment of the Laowan gold deposit, Tongbai County of Henan Province, China. Dissertation for the Master’s Degree. Beijing: China University of Geosciences (in Chinese)
24 S L Kou, Y S Du, Y Cao, J L Chen, G M Shi, J D Chen, L H Wang (2016). Geology and ore-forming fluid geochemistry of Laowan gold deposit in Tongbai County, Henan Province. Miner Depos, 35(2): 245–260
25 A Kröner, G W Zhang, Y Sun (1993) Granulites in the Tongbai area, Qinling belt, China: geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics, 12: 245–255
https://doi.org/10.1029/92tc01788
26 R R Large, L Danyushevsky, C Hollit, V Maslennikov, S Meffre, S Gilbert, S Bull, R Scott, P Emsbo, H Thomas, B Singh, J Foster (2009). Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol, 104(5): 635–668
https://doi.org/10.2113/gsecongeo.104.5.635
27 R R Large, V Maslennikov, F Robert, L V Danyushevsky, Z S Chang (2007). Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. Econ Geol, 102(7): 1233–1267
https://doi.org/10.2113/gsecongeo.102.7.1233
28 H M Li (2007). Study on the sources of ore-forming materials in the major gold-silver-polymetal doposits in Tongbai County, Henan Province, China. Dissertation for the Master’s Degree. Beijing: China University of Geosciences (in Chinese)
29 J Li, Y J Chen, Y X Liu (2004). Typomorphic characteristics of pyrite from lode gold deposits in north China craton: implications for fluid mineralization. J Miner Petrol, 24(3): 93–102
30 X Li, K D Zhao, S Y Jiang, M R Palmer (2019). In-situ U-Pb geochronology and sulfur isotopes constrain the metallogenesis of the giant Neves Corvo deposit, Iberian Pyrite Belt. Ore Geol Rev, 105: 223–235
https://doi.org/10.1016/j.oregeorev.2018.12.023
31 R H Lin, T J Wang, G W Shi, J Wang (2010). Structure control characteristics and genesis of Laowan gold deposit in Henan province. Contrib Geol Mineral Reso Res, 25(4): 342–346
32 W C Liu, J G Du, D Zhang, X C Mao (2003). The relationship between structures and mineralization of Laowan gold mining area in northern Huaiyang tectonic belt. Geosci, 17(1): 8–19
33 X C Liu, B M Jahn, J J Cui, S Z Li, Y B Wu, X H Li (2010). Triassic retrograded eclogites and Cretaceous gneissic granites in the Tongbai Complex, central China: implications for the architecture of the HP/UHP Tongbai–Dabie–Sulu collision zone. Lithos, 119(3–4): 211–237
https://doi.org/10.1016/j.lithos.2010.06.005
34 X C Liu, B M Jahn, J Hu, S Z Li, X Liu, B Song (2011). Metamorphic patterns and SHRIMP zircon ages of medium-to-high grade rocks from the Tongbai orogen, central China: implications for multiple accretion/collision processes prior to terminal continental collision. J Metamorph Geol, 29(9): 979–1002
https://doi.org/10.1111/j.1525-1314.2011.00952.x
35 Y F Liu, S H Jiang, D H Fang, Y Liu (2008a). Zircon SHRIMP U-Pb dating of Laowan granite in Tongbai area, Henan Province, and its geological implications. Acta Petrol Miner, 27(6): 33–37
36 Y J Liu, L M Cao, Z L Li, H N Wang, T Q Chu, J R Zhang (1984). Element Geochemistry. Beijing: Geological Publishing House (in Chinese)
37 Y S Liu, Z C Hu, S Gao, D Günther, J Xu, C G Gao, H H Chen (2008b). In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257(1–2): 34–43
https://doi.org/10.1016/j.chemgeo.2008.08.004
38 Q Liu, R Zhu, Y Pan, B Guo (1999). Secular variations in geomagnetic field caused by the fluctuations in the fluid flow in the outer-core. Chin Sci Bull, 44(13): 1214–1218
https://doi.org/10.1007/BF02885969
39 G Loftus-Hills, M Solomon (1967). Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Miner Depos, 2: 228–242
https://doi.org/doi.org/10.1007/BF00201918
40 H W Ma (2007). Integrated ore-prospecting criteria and ore-prospecting model for the Laowan gold deposit in Tonbai County, Henan province. Geophys Geochem Explor, 31(3): 211–215
41 V V Maslennikov, S P Maslennikova, R R Large, L V Danyushevsky (2009). Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasay volcanic-hosted massive sulfide deposit (southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ Geol, 104(8): 1111–1141
https://doi.org/10.2113/gsecongeo.104.8.1111
42 S E Mills, A G Tomkins, R F Weinberg, H R Fan (2015). Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China. Ore Geol Rev, 71: 150–168
https://doi.org/10.1016/j.oregeorev.2015.04.022
43 J W Morse, G W Luther III (1999). Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta, 63(19–20): 3373–3378
https://doi.org/10.1016/S0016-7037(99)00258-6
44 A H Mumin, M E Fleet, S L Chryssoulis (1994). Gold mineralisation in As-rich mesothermal gold ores of the Bogosu–Prestea mining district of the Ashanti gold belt, Ghana: remobilization of “invisible” gold. Miner Depos, 29(6): 445–460
https://doi.org/10.1007/BF00193506
45 B Niu, Z Liu, J Ren (1993) The tectonic relationship between the Qinling Mountains and Tongbai-Dabie Mountains with notes on the tectonic evolution of the Hehuai Basin. Bull Chin Academy Geol Sci, 26:1–12
46 H Ohmoto (1986). Stable isotope geochemistry of ore deposits. Rev Mineral, 16: 491–559
47 H Ohmoto, M B Goldhaber (1997). Sulfur and carbon isotopes. In: Barnes HL ed. Geochemistry of Hydrothermal Ore Deposits, 3rd ed. New York: Wiley, 435–486
48 C S Palenik, S Utsunomiya, M Reich, S E Kesler, L M Wang, R C Ewing (2004). “Invisible” Gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit. Am Mineral, 89(10): 1359–1366
https://doi.org/10.2138/am-2004-1002
49 C R Pan (1999). Laowan gold deposit and mineralization dynamic of magmatic hydrothermal in Tongbai, Henan Province, China. Dissertation for the Master’s Degree. Hefei: Hefei University of Technology (in Chinese)
50 C R Pan, S C Yue (2002). Research on the forming era of Laowan gold deposit in Henan Province and its lead isotope. J Hefei Uni Technol, 25(1): 9–13
51 F Pirajno (2007). Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol Sin, 23(9): 2085–2108
52 B J Price (1972). Minor elements in pyrites from the Smithers map area, British Columbia and exploration applications of minor element studies. Dissertation for the Master’s Degree. Vancouver: University of British Columbia
53 M Reich, S E Kesler, S Utsunomiya, C S Palenik, S L Chryssoulis, R C Ewing (2005). Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta, 69(11): 2781–2796
https://doi.org/10.1016/j.gca.2005.01.011
54 M Reich, S Utsunomiya, S E Kesler, L Wang, R C Ewing, U Becker (2006). Thermal behavior of metal nanoparticles in geologic materials. Geology, 34(12): 1033–1036
https://doi.org/10.1130/G22829A.1
55 J Shao (1995). Geology setting of Laowan Au-mineralization zone. J Precious Metallic Geol, 4 (2): 138–146
56 S M F Sheppard (1986). Characterization and isotopic variations in natural waters. Rev Mineral, 16: 165–183
57 X X Song (1984). Minor elements and ore genesis of the fankou lead-zinc deposit, China. Miner Depos, 19(2): 95–104
58 X X Song, J K Zhang (1986). Minor elements in pyrites of various genetic types from China. Bull Institute Miner Deposits Chin Academy Geolo Sci., 2: 166–175
59 Y H Sung, J Brugger, C L Ciobanu, A Pring, W Skinner, M Nugus (2009). Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, eastern goldfields province, Western Australia. Miner Depos, 44(7): 765–791
https://doi.org/10.1007/s00126-009-0244-4
60 S T Suo, W J Zhang (1993). On a two-side orogeny—an example taking from the Tongbai-Dabie orogenic belt. J Xi’an College Geol, 15(s1): 29–37
61 S T Suo, Z Q Zhong, B Z Wei, H F Zhang, H W Zhou, Z D You (2002). Structure and rheological evolution of UHP and HP metamorphic belts in the Tongbai-Dabie-Sulu region, China. Earth Sci J China Uni Geosci, 27(5): 549–557
62 S T Suo, Z Q Zhong, H F Zhang, H W Zhou, Z D You (2001). High-pressure metamorphic and its tectonic pattern in Tongbai Mountains, central China. Earth Sci J China Uni Geosci, 26(6): 551–559
63 H P J Taylor (1997). Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. Geochem Hydrothermal Ore Depos, 229–302
64 N Tribovillard, T J Algeo, T Lyons, A Riboulleau (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol, 232(1–2): 12–32
https://doi.org/10.1016/j.chemgeo.2006.02.012
65 I V Vikent’ev, N V Sidorova, O V Vikent’eva, S G Su, Z H Luo, N S Bortnikov (2015). Tellurides in the Laowan gold deposit (east China): new evidence for a magmatic source of hydrothermal fluids. Dokl Akad Nauk, 462(4): 456–460
66 S Q Wang, Y L Xu (2005). Research on source of ore-forming materials of Laowan gold deposit in Tongbai County, Henan Province. Express in Formation of Mining Industry, 21(9): 12–14
67 Z Q Wang, Z Yan, T Wang, L D Gao, Q R Yan, J L Chen, Q G Li, C F Jiang, P Liu, Y L Zhang, C L Xie, Z J Xiang (2009). New advances in the study on ages of metamorphic strata in the Qinling orogenic belt. Acta Geoscientica Sinica, 30(5): 561–570
68 Q Q Xie, C R Pan, X C Xu, S C Yue (2003). Geochemistry of fluid inclusions and rare earth elements from Laowan gold deposit in Henan Province. J Hefei Uni Technol, 26(1): 47–52
69 Q Q Xie, X C Xu, S C Yue (2000). Isochron age of the Laowan gold deposit and Laowan granite, Tongbai region, Henan Province and its implications. Geol J China Uni, 6(4): 546–553
70 Q Q Xie, X C Xu, S C Yue (2001). Isotopic geochemical of hydrogen, oxygen and helium and ore-forming fluid sources of Laowan gold deposit in Tongbai, Henan Province. Chin J Geol, 36(1): 36–42
71 Q Q Xie, X C Xu, X X Li, T H Chen, S M Lu (2005). Rare earth element geochemical characteristics of Laowan gold deposit in Henan Province: trace to source of ore-forming materials. J Chin Rare Earth Soci, 23(5): 636–640
72 B Xing, W Zheng, Z X Ouyang, X D Wu, W P Lin, Y Tian (2016). Sulfide Microanalysis and S isotope of Miaoshan Cu polymetallic deposit in western Guangdong Province, and its constraints on the ore genesis. Acta Geol Sin, 90(5): 971–986
73 Y T Yan, N Zhang, S R Li, Y R Li (2014). Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, eastern China. Geoscience Frontiers, 5(2): 205–213
https://doi.org/10.1016/j.gsf.2013.05.003
74 M Z Yang, J J Fu, A Q Ren (2015). Recognition of Yanshanian magmatic-hydrothermal gold and polymetallic gold mineralization in the Laowan gold metallogenic belt, Tongbai Mountains: new evidence from structural controls, geochronology and geochemistry. Ore Geol Rev, 69: 58–72
https://doi.org/10.1016/j.oregeorev.2015.02.009
75 M Z Yang, J J Fu, S F Wang, J P Lu (2014a). Establishment and significance of dextral strike-slip fault ore-controlling system of the Laowan gold belt. Tongbai Mountains Geotecton Metall, 38(1): 94–107
76 M Z Yang, J P Lu, J J Fu, A Q Ren, S F Wang (2014b). Magmatic hydrothermal gold and polymetallic metallogenesis related to Yanshanian magmatism of Laowan gold belt, Tongbai Mountain: evidence from geochemistry, geochronology and ore-controlling structural geological constraints. Miner Depos, 33(3): 651–666
77 D Y Yuan, Y D Li (2008). Study on the alteration characteristics of the surrounding rock of Laowan gold deposit in Tongbai County, Henan. Express Information of Mining Industry, 24(7): 78–79
78 X Zhai, H W Day, B R Hacker, Z You (1998). Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China. Geology, 26(4): 371
https://doi.org/10.1130/0091-7613(1998)026<0371:PMITQO>2.3.CO;2
79 G Zhang, H M Li, C H Wang, D H Wang, L X Li, J Zhang (2008a). 40Ar–39Ar age of muscovite from the Laowan gold deposit in Henan and its significance. Acta Geoscientica Sinica, 29(1): 45–50 (in Chinese)
80 G Zhang, D H Wang, F L Li (2008b). Laowan granitic body and association genesis of Laowan gold deposit in the eastern Qinling. Geol Prospect, 44(4): 50–54
81 G Zhang, Z Yu, Y Sun, S Cheng, T Li, F Xue, C Zhang (1989). The major suture zone of the Qinling orogenic belt. Southeast Asian Earth Sci, 3: 63–76
82 H Zhang, C Z Song, D X Wang, S L Ren, W C Tu, J H Li (2012). Temperature and pressure conditions of tectonic deformation of Zhuyangguan-Xiaguan fault belt. J Hefei Uni Technol, 35(8): 1101–1105
83 J Zhang, J Deng, H Y Chen, L Q L Yang, D Cooke, L Danyushevsky, Q J Gong (2014). LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: implication for ore-forming process. Gondwana Res, 26(2): 557–575
https://doi.org/10.1016/j.gr.2013.11.003
84 S G Zhang, Y S Wan, G H Liu (1991). Metamorphic Geology of the Kuanping Group in the Northern Qinling Mountains. Beijing: Sci Technology Press
85 Z H Zhang, G S Fang, H Y Hou, H W Ma, W R Hou (2002). Geological features and genesis of the Laowan gold deposite in the Tongbai region, Henan. G Geol, 8(3): 20–26
86 Z Q Zhang, D Y Liu, G M Fu (1994). Isotopic Geochronology of Metamorphic Strata in North Qinling. Beijing: Geological Publishing House
87 H X Zhao, H E Frimmel, S Y Jiang, B Z Dai (2011). LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: implications for ore genesis. Ore Geol Rev, 43(1): 142–153
https://doi.org/10.1016/j.oregeorev.2011.07.006
88 J H Zhao (2007). Study on the ore prospecting model and indicator in the Tongbai Dabie orogenic belt gold (silver) ore region. Express Information of Mining Industry, 23(9): 71–73
89 J Z Zhao (1990). Laowan gold belt and its exploration process. Henan Geol, 8(2): 15–22
90 Y F Zheng, J F Chen (2000). Stable Isotope Geochemistry. 2nd ed. Beijing: Science Press (in Chinese)
91 Y Zheng, L Zhang, Y J Chen, P Hollings, H Y Chen (2013). Metamorphosed Pb–Zn–(Ag) ores of the Keketale VMS deposit, NW China: evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geol Rev, 54(8): 167–180
https://doi.org/10.1016/j.oregeorev.2013.03.009
92 Z Q Zhong, S T Suo, H F Zhang, H W Zhou (2001). Major constituents and texture of the Tongbai-Dabie collisional orogenic belt. Earth Sci J China Uni Geosci, 26(6): 560–567
93 Q Zhou (2016). The prospecting breakthrough of Laowan gold deposit, Henan Province. China Mine Engineering, 45(5): 86
94 T F Zhou, L J Zhang, F Yuan, Y Fan, D R Cooke (2010). LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu-Au-S deposit in Tongling, Anhui, and its constraints on the ore genesis. Earth Sci Front, 17(2): 306–319
95 Z Y Zhu, N J Cook, T Yang, C L Ciobanu, K D Zhao, S Y Jiang (2016). Mapping of sulfur isotopes and trace elements in sulfides by LA-(MC)-ICP-MS: potential analytical problems, improvements and implications. Minerals (Basel), 6(4): 110
https://doi.org/10.3390/min6040110
[1] Peiyuan CHEN,Xiucheng TAN,Huiting YANG,Ming TANG,Yiwei JIANG,Xiuju JIN,Yang YU. Characteristics and genesis of the Feixianguan Formation oolitic shoal reservoir, Puguang gas field, Sichuan Basin, China[J]. Front. Earth Sci., 2015, 9(1): 26-39.
[2] Yan LIU, Zhongfa HE, Zhanghua WANG. Magnetic properties of Holocene core ZK9 in the subaqueous Yangtze delta and their mechanisms and implications[J]. Front Earth Sci, 2013, 7(3): 331-340.
[3] ZHENG Junmao, YOU Jun, HE Dongbo. Comparison between control factors of high quality continental reservoirs in Bohai Bay basin and Ordos basin[J]. Front. Earth Sci., 2008, 2(1): 83-95.
[4] GONG Yiming, XU Ran, FENG Qi, ZHANG Lijun, MA Huizhen, ZENG Jianwei. Hypersaline and anoxia in the Devonian Frasnian–Famennian transition: Molecular fossil and mineralogical evidence from Guangxi, South China[J]. Front. Earth Sci., 2007, 1(4): 458-469.
[5] QIN Jiangfeng, LAI Shaocong, LI Yongfei. Post-collisional adakitic biotite plagiogranites from Guangtoushan pluton (Mianxian, central China): Petrogenesis and tectonic implication[J]. Front. Earth Sci., 2007, 1(3): 299-303.
[6] WANG Yong, HOU Zengqian, DONG Fangliu, ZENG Pusheng, MO Xuanxue, BI Xianmei. Stable isotope characteristics and origin of ore-forming fluids in copper-gold-polymetallic deposits within strike-slip pull-apart basin of Weishan-Yongping continental collision orogenic belt, Yunnan Province, China[J]. Front. Earth Sci., 2007, 1(3): 322-332.
[7] LIAO Zhongli, ZHU Dicheng, WANG Liquan, GENG Quanru, MO Xuanxue, PAN Guitang, ZHAO Zhidan, DONG Guochen, XIONG Xingguo. The petrochemistry characteristics and petrogenesis of peraluminous granite in Tibet[J]. Front. Earth Sci., 2007, 1(2): 194-205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed