Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (1) : 26-39    https://doi.org/10.1007/s11707-014-0441-z
RESEARCH ARTICLE
Characteristics and genesis of the Feixianguan Formation oolitic shoal reservoir, Puguang gas field, Sichuan Basin, China
Peiyuan CHEN1,2(), Xiucheng TAN1,2(), Huiting YANG2, Ming TANG2, Yiwei JIANG3, Xiuju JIN3, Yang YU1,2
1. State Key Laboratory of Oil and Gas Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China
2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
3. Research Institute of Petroleum Exploration and Development, SINOPEC Zhongyuan Oilfield Company, Puyang 457001, China
 Download: PDF(4188 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Lower Triassic Feixianguan Formation at the well-known Puguang gasfield in the northeastern Sichuan Basin of southwest China produces a representative oolitic reservoir, which has been the biggest marine-sourced gasfield so far in China (discovered in 2003 with proven gas reserves greater than 350×108 m3). This study combines core, thin section, and scanning electron microscopy observations, and geochemical analysis (C, O, and Sr isotopes) in order to investigate the basic characteristics and formation mechanisms of the reservoir. Observations indicate that platform margin oolitic dolomites are the most important reservoir rocks. Porosity is dominated by intergranular and intragranular solution, and moldic pore. The dolomites are characterized by medium porosity and permeability, averaging at approximately 9% and 29.7 mD, respectively. 87Sr/86Sr (0.707536–0.707934) and δ13CPDB (1.8‰–3.5‰) isotopic values indicate that the dolomitization fluid is predominantly concentrated seawater by evaporation, and the main mechanism for the oolitic dolomite formation is seepage reflux at an early stage of eodiagenesis. Both sedimentation and diagenesis (e.g., dolomitization and dissolution) have led to the formation of high-quality rocks to different degrees. Dolomite formation may have little contribution, karst may have had both positive and negative influences, and burial dissolution-TSR (thermochemical sulfate reduction) may not impact widely. The preservation of primary intergranular pores and dissolution by meteoric or mixed waters at the early stage of eogenesis are the main influences. This study may assist oil and gas exploration activities in the Puguang area and in other areas with dolomitic reservoirs.

Keywords oolite shoal reservoir      carbonate      diagenesis      Triassic Feixianguan Formation      Puguang gas field      Sichuan Basin     
Corresponding Author(s): Peiyuan CHEN,Xiucheng TAN   
Issue Date: 01 January 2023
 Cite this article:   
Peiyuan CHEN,Xiucheng TAN,Huiting YANG, et al. Characteristics and genesis of the Feixianguan Formation oolitic shoal reservoir, Puguang gas field, Sichuan Basin, China[J]. Front. Earth Sci., 2015, 9(1): 26-39.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0441-z
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I1/26
1 T F Anderson, M A Arthur (1983). Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems∥Arthur M A. Stable Isotopes in Sedimentary Geology, Tulsa. SEPM Short Course, 10: 15–32
2 D K Beach (1982). Depositional and Diagenetic History of Pliocene-Pleistocene Carbonates of Northwestern Great Bahama Bank: Evolution of A Carbonate Platform. Dissertation for Ph. D degree. Miami: University of Miami, 600
3 J E Brasher, K R Vagle (1996). Influence of lithofacies and diagenesis on Norwegian North Sea chalk reservoirs. AAPG Bull, 80(5): 746–769
4 D A Budd (1988). Petrographic products of freshwater diagenesis in Holocene ooid sands, Schooner Cays, Bahamas. Carbonates and Evaporites, 3(2): 143–163
https://doi.org/10.1007/BF03175114
5 J P Duggan, E W Mountjoy, L D Stasiuk (2001). Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada. Sedimentology, 48(2): 301–323
https://doi.org/10.1046/j.1365-3091.2001.00364.x
6 R J Dunham (1962). Classification of carbonate rocks according to depositional texture. In: W E Han, ed. Classification of Carbonate Rocks. AAPG Mem, 1: 108–121
7 S N Ehrenberg, P H Nadeau, A A M Aqrawi (2007). A comparison of Khuff and Arab reservoir potential throughout the Middle East. AAPG Bull, 91(3): 275–286
https://doi.org/10.1306/09140606054
8 J L Feng, J Cao, K Hu, X Q Peng, Y Chen, Y F Wang, M Wang (2013). Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic-carbonate sediments, northwestern Qaidam Basin, northwest China. Mar Pet Geol, 39(1): 124–137
https://doi.org/10.1016/j.marpetgeo.2012.09.002
9 Q L Fu, H R Qing, K M Bergman (2006). Early dolomitization and recrystallization of carbonate in an evaporite basin: the Middle Devonian Ratner laminite in southern Saskatchewan, Canada. J Geol Soc London, 163(6): 937–948
https://doi.org/10.1144/0016-76492005-088
10 F W Gale J, L A Gomez (2007). Late opening-mode fractures in karst-brecciated dolostones of the Lower Ordovician Ellenburger Group, west Texas: recognition, characterization, and implications for fluid flow. AAPG Bull, 91(7): 1005–1023
https://doi.org/10.1306/03130706066
11 B Glumac, M L Spivak-Birndorf (2002). Stable isotopes of carbon as an invaluable stratigraphic tool: an example from the Cambrian of the northern Appalachians, USA. Geology, 30(6): 563–566
https://doi.org/10.1130/0091-7613(2002)030<0563:SIOCAA>2.0.CO;2
12 X S Guo, T L Guo (2012). Exploration Theory and Practice of Large Scale Carbonate Platform Margin Gas Field of Puguang and Yuanba. Beijing: Science Press, 159–163 (in Chinese)
13 F Hao, T L Guo, C G Du, H Y Zou, X Y Cai, Y M Zhu, P P Li, C W Wang, Y C Zhang (2009). Accumulation mechanisms and evolution history of the giant Puguang gas field, Sichuan Basin, China. Acta Geol Sin, 83(1): 136–145
https://doi.org/10.1111/j.1755-6724.2009.00016.x
14 F Hao, T L Guo, Y M Zhu, X Y Cai, H Y Zou, P P Li (2008). Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gasfield, Sichuan Basin, China. AAPG Bull, 92(5): 611–637
https://doi.org/10.1306/01210807090
15 L A Hardie (1987). Dolomitization: a critical view of some current views. J Sediment Res, 57(1): 166–183
https://doi.org/10.1306/212F8AD5-2B24-11D7-8648000102C1865D
16 R S Harrison (1975). Porosity in Pleistocene Grainstones from Barbados: some preliminary observations. Bull Can Pet Geol, 23(2): 383–392
17 S J Huang (1990). Cathodoluminescence and diagenetic alteration of marine carbonate minerals. Sedimentary Geol and Tethyan Geol, 4: 9–15
18 L Jiang, C F Cai, R H Worden, K K Li, L Xiang (2013). Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China. Geofluids, 13(2): 232–245
https://doi.org/10.1111/gfl.12034
19 A J Kaufman, A H Knoll (1995). Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res, 73(1–4): 27–49
https://doi.org/10.1016/0301-9268(94)00070-8 pmid: 11539552
20 C Korte, H W Kozur, P Bruckschen, J Veizer (2003). Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta, 67(1): 47–62
https://doi.org/10.1016/S0016-7037(02)01035-9
21 K K Li, C F Cai, L Jiang, L L Cai, L Q Jia, B Zhang, L Xiang, Y Y Yuan (2012). Sr evolution in the Upper Permian and Lower Triassic carbonates, northeast Sichuan basin, China: constraints from chemistry, isotope and fluid inclusions. Appl Geochem, 27(12): 2409–2424
https://doi.org/10.1016/j.apgeochem.2012.07.013
22 Y S Ma, C L Mou, X S Guo, Q Yu, Q Y Tan (2006a). Sedimentary facies and distribution of reservoir rocks from the Feixianguan Formation in the Daxian-Xuanhan region, NE Sichuan. Acta Geol Sin, 80(1): 137–151
https://doi.org/10.1111/j.1755-6724.2006.tb00803.x
23 Y S Ma, T L Guo, X Y Cai (2006b). Petroleum geology of the Northeastern Sichuan Basin and the characteristics of Puguang Gas Field, China. AAPG International Conference (Perth, Australia) Technical Program
24 Y S Ma, T L Guo, X F Zhao, X Y Cai (2008). The formation mechanism of high-quality dolomite reservoir in the deep of Puguang Gas Field. Sci China Ser D, 51(S1): 53–64
https://doi.org/10.1007/s11430-008-5008-y
25 Y S Ma, T L Guo, G Y Zhu, X Y Cai, Z Y Xie (2007a). Simulated experiment evidences of the corrosion and reform actions of H2S to carbonate reservoirs: an example of Feixianguan Formation, east Sichuan. Chin Sci Bull, 52(S1): 178–183
https://doi.org/10.1007/s11434-007-6019-3
26 Y S Ma, X S Guo, T L Guo, R Huang, X Y Cai, G X Li (2007b). The Puguang gas field: new giant discovery in the mature Sichuan Basin, southwest China. AAPG Bull, 91(5): 627–643
https://doi.org/10.1306/11030606062
27 H G Machel, J Lonnee (2002). Hydrothermal dolomite-a product of poor definition and imagination. Sediment Geol, 152(3–4): 163–171
https://doi.org/10.1016/S0037-0738(02)00259-2
28 S J Mazzullo, P M Harris (1992). Mesogenetic dissolution; its role in porosity development in carbonate reservoirs. AAPG Bull, 76(5): 607–620
29 W J Meyers, F H Lu, J K Zachariah (1997). Dolomitization by mixed evaporative brines and freshwater, upper Miocene carbonates, Nijar, Spain. J Sediment Res, 67(5): 898–912
30 C H Moore (1989). Carbonate Diagenesis and Porosity. New York: Elsevier, 338
31 C H Moore, Y Druckman (1981). Burial diagenesis and porosity evolution, upper Jurassic Smackover, Arkansas and Louisiana. Am Assoc Pet Geol Bull, 65(4): 597–628
32 M Moradpour, Z Zamani, S A Moallemi (2008). Controls in reservoir quality in the Lower Triassic Kangan Formation, Southern Persian Gulf. J Pet Geol, 31(4): 367–385
https://doi.org/10.1111/j.1747-5457.2008.00427.x
33 P A Scholle, R B Halley (1985). Burial diagenesis: out of sight, out of mind. In: N Schneidermann, P M Harris, eds. Carbonate Cements. Society of Economic Paleontologists and Mineralogists Special Publication, 36: 309–334
34 R P Steinen (1974). Phreatic and vadose diagenetic modification of Pleistocene limestone: petrographic observations from subsurface of Barbados, West Indies. AAPG Bull, 58(6): 1008–1024
35 G H Swei, M E Tucker (2012). Impact of diagenesis on reservoir quality in ramp carbonates: Gialo Formation (Middle Eocene), Sirt Basin, Libya. J Pet Geol, 35(1): 25–47
https://doi.org/10.1111/j.1747-5457.2012.00517.x
36 K Swirydczuk (1988). Mineralogical control on porosity type in Upper Jurassic Smackover ooid grainstones, Southern Arkansas and Northern Louisiana. J Sediment Petrol, 58(2): 339–347
37 X C Tan, H Liu, L Li, B Luo, X G Liu, X H Mou, Y Nie, W Y Xi (2011). Primary intergranular pores in Oolitic Shoal Reservoir of Lower Triassic Feixianguan Formation, Sichuan Basin, Southwest China: fundamental for reservoir formation and retention diagenesis. Journal of Earth Science, 22(1): 101–114
https://doi.org/10.1007/s12583-011-0160-2
38 X C Tan, L Z Zhao, B Luo, X F Jiang, J Cao, H Liu, L Li, X B Wu, Y Nie (2012). Comparison of basic features and origins of oolitic shoal reservoirs between carbonate platform interior and platform margin locations in the Lower Triassic Feixianguan Formation of the Sichuan Basin, Southwest China. Petroleum Science, 9(4): 417–428
https://doi.org/10.1007/s12182-012-0229-2
39 J Veizer, J Hoefs (1976). The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta, 40(11): 1387–1395
https://doi.org/10.1016/0016-7037(76)90129-0
40 G M Walkden, O Williams (1991). The diagenesis of the late Dinantian Derbyshire-East Midland carbonate shelf, central England. Sedimentology, 38(4): 643–670
https://doi.org/10.1111/j.1365-3091.1991.tb01013.x
41 F Wang, X X Lu, C H Lo, F Y Wu, H Y He, L K Yang, R X Zhu (2007a). Post-collisional, potassic monzonite–minette complex (Shahewan) in the Qinling Mountains (central China): 40Ar/39Ar thermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogen. J Asian Earth Sci, 31(2): 153–166
https://doi.org/10.1016/j.jseaes.2007.06.002
42 S Y Wang, X Q Jiang, H L Guan, Y J Bao (2009). Pore evolution of reservoirs of Feixianguan Formation in Puguang gas field in Northeastern Sichuan. Petroleum Geology & Experiment, 31(1): 26–30 (in Chinese)
43 S Y Wang, X Q Jiang, H L Guan, Y J Bao (2010). Diagenesis effects of Lower Triassic Feixianguan Formation reservoir in Puguang gas field, Northeast Sichuan. Petroleum Geology & Experiment, 32(4): 366–372 (in Chinese)
44 X Z Wang, F Zhang, Q Ma, M P Yang, Y G Wang, Y C Wen, Y Yang, J Zhang (2002). The characteristics of reef and bank and the fluctuation of sea-level in Feixianguan Formation period of Late Permian-Early Triassic, East Sichuan basin. Acta Sedimentologica Sinica, 20(2): 249–254 (in Chinese)
45 Y G Wang, Y C Wen, H T Hong, M L Xia, T T He, S J Song (2007b). Diagenesis of Triassic Feixianguan Formation in Sichuan Basin, Southwest China. Acta Sedimentologica Sinica, 25(6): 831–839 (in Chinese)
46 J Warren (2000). Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev, 52(1–3): 1–81
https://doi.org/10.1016/S0012-8252(00)00022-2
47 W Z Zhao, C C Xu, T S Wang, H J Wang, Z C Wang, C S Bian, X Li (2011). Comparative study of gas accumulations in the Permian Changxing reefs and Triassic Feixianguan oolitic reservoirs between Longgang and Luojiazhai-Puguang in the Sichuan Basin. Chin Sci Bull, 56(31): 3310–3320
https://doi.org/10.1007/s11434-011-4668-8
48 R C Zheng, L R Dang, H G Wen, Z W Chen, F M Chen, H J Zhang (2011). Diagenesis characteristics and system for dolostone in Feixianguan Formation of Northeast Sichuan. Earth Science-Journal of China University of Geoscience, 36(4): 659–669 (in Chinese)
49 G Y Zhu, S C Zhang, Y B Liang, J X Dai, J Li (2005a). Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan Basin, southwestern China. Sci China Ser D, 48(11): 1960–1971
50 G Y Zhu, S C Zhang, Y B Liang, J X Dai, J Li (2005b). Origins of high H2S-bearing natural gas in China. Acta Geol Sin, 79(5): 697–708
51 H Y Zou, F Hao, Y M Zhu, T L Guo, X Y Cai, P P, Li X F Zhang (2008). Source rocks for the Giant Puguang Gas Field Sichuan Basin: implication for petroleum exploration in marine sequences in South China. Acta Geologica Sinica, 82(3): 477–486
[1] Jin LAI, Xiaojiao PANG, Meng BAO, Bing WANG, Jianan YIN, Guiwen WANG, Xuechun FAN. Role of bedding planes played in enhancing dissolution in sandstones[J]. Front. Earth Sci., 2022, 16(3): 587-600.
[2] Yingchun GUO, Pengwei WANG, Xiao CHEN, Xinxin FANG. Determination of gas adsorption capacity in organic-rich marine shale: a case study of Wufeng-Lower Longmaxi Shale in the southeast Sichuan Basin[J]. Front. Earth Sci., 2022, 16(3): 541-556.
[3] Peiyuan CHEN, Lina GUO, Chen LI, Yi TONG. Karstification characteristics of the Cenomanian–Turonian Mishrif Formation in the Missan Oil Fields, southeastern Iraq, and their effects on reservoirs[J]. Front. Earth Sci., 2022, 16(2): 435-445.
[4] Jinkai WANG, Yuxiang FU, Zhaoxun YAN, Jialin FU, Jun XIE, Kaikai LI, Yongfu ZHAO. Influence of sedimentation and diagenesis on reservoir physical properties: a case study of the Funing Formation, Subei Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 892-908.
[5] Gaoxiang WANG, Lei CHEN, Yang YANG, Cui JING, Man CHEN, Xiucheng TAN, Xin CHEN, Di CAO, Zibo WEI, Minglong LI, Dong HUANG. Characteristics and formation mechanism of siltstone-mudstone rhythmic sedimentary sections in the Lower Silurian Longmaxi Formation in the Changning area, South Sichuan Basin, southwest China[J]. Front. Earth Sci., 2021, 15(4): 754-769.
[6] Xin CHEN, Lei CHEN, Xiucheng TAN, Shu JIANG, Chao WANG. Impact of pyrite on shale gas enrichment—a case study of the Lower Silurian Longmaxi Formation in southeast Sichuan Basin[J]. Front. Earth Sci., 2021, 15(2): 332-342.
[7] Weidong XIE, Meng WANG, Hua WANG, Ruying MA, Hongyue DUAN. Diagenesis of shale and its control on pore structure, a case study from typical marine, transitional and continental shales[J]. Front. Earth Sci., 2021, 15(2): 378-394.
[8] Yu LI, Nai’ang WANG, Zhuolun LI, Xuehua ZHOU, Chengqi ZHANG, Yue WANG. Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China[J]. Front Earth Sci, 2013, 7(4): 487-500.
[9] Hongmei WANG, Qianying LIU, Deng LIU, Xuan QIU, Linfeng GONG, Cuiping ZENG, . Calcium carbonate precipitation induced by a bacterium strain isolated from an oligotrophic cave in Central China[J]. Front. Earth Sci., 2010, 4(2): 148-151.
[10] TANG Liangjie, LI Lei, LI Rufeng, LI Jianming, WU Xiling. Sedimentary charateristics and hydrocarbon accumulation in Northeast Sichuan basin[J]. Front. Earth Sci., 2008, 2(1): 120-125.
[11] ZHENG Junmao, YOU Jun, HE Dongbo. Comparison between control factors of high quality continental reservoirs in Bohai Bay basin and Ordos basin[J]. Front. Earth Sci., 2008, 2(1): 83-95.
[12] TANG Xuan, JIN Zhijun, YANG Minghui, MING Haihui. Experimental study on water-oil migration and accumulation in a 2D micro-model of carbonate fracture media[J]. Front. Earth Sci., 2007, 1(2): 251-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed