Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (4) : 487-500    https://doi.org/10.1007/s11707-013-0392-9
RESEARCH ARTICLE
Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China
Yu LI(), Nai’ang WANG, Zhuolun LI, Xuehua ZHOU, Chengqi ZHANG, Yue WANG
College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
 Download: PDF(663 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbonate deposition is a main inorganic carbon sink in lakes, which varies depending on climate change and internal lake dynamics. Research on the relationship between lake carbonate and climate will help to understand mechanisms of carbon cycle in lacustrine systems. The approach of this study is to explicitly link carbonate formation with Holocene long-term climate change and lake evolution in a paleo-lake (Zhuye Lake), which is a terminal lake of a typical inland drainage basin in arid China. This paper presents analysis on grain-size, carbonate content and mineralogical composition of sediment samples from different locations of Zhuye Lake. The results show that calcite and aragonite are two main components for the lake carbonate, and the carbonate enrichment is associated with lake expansion during the Late Glacial and early to middle Holocene. Holocene lake expansion in arid regions of China is usually connected with high basin-wide precipitation that can strengthen the basin-wide surface carbonate accumulation in the terminal lake. For this reason, Zhuye Lake plays a role of carbon sinks during the wet periods of the Holocene.

Keywords carbonate      carbon cycle      lake sediments      mineralogical composition      climate change     
Corresponding Author(s): LI Yu,Email:liyu@lzu.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Yu LI,Nai’ang WANG,Zhuolun LI, et al. Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China[J]. Front Earth Sci, 2013, 7(4): 487-500.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0392-9
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I4/487
Fig.1  Map showing latitudes, longitudes and elevations in the Shiyang River drainage area and Zhuye Lake. Black solid circles indicate the locations of the QTH01, QTH02, XQ, SKJ and JTL sections.
Fig.2  Lithology and the calibrated C dates (cal yr BP) for the QTH01, QTH02, XQ, SKJ and JTL sections.
SectionLaboratory numberDepth/mDating materials14C age/yr BPCalibrated 14C age (2σ)/cal yr BP
QTH01LUG96-442.25Organic matter1550±601316-1551(1447)
LUG96-452.50Organic matter2470±902351-2740(2547)
BA052232.62Shells3140±40 (AMS)3263-3448(3369)
LUG96-462.90Organic matter3300±903356-3821(3537)
LUG96-473.15Organic matter4130±1104298-4953(4652)
BA052243.15Shells4160±40 (AMS)4571-4831(4702)
LUG96-483.60Organic matter4530±804881-5449(5168)
LUG96-494.25Inorganic matter5960±656652-6953(6796)
BA052254.25Shells5920±40 (AMS)6658-6854(6742)
BA1012344.25Pollen concentrates6510±40(AMS)7322-7494(7429)
LUG02-255.37Organic matter8412±629293-9530(9437)
BA1012375.61Pollen concentrates14220±50(AMS)16989-17599(17299)
LUG02-235.72Organic matter9183±6010234-10502(10353)
QTH02BA1012541.99Pollen concentrates4300±25(AMS)4830-4958(4856)
BA052223.88Shells6550±40 (AMS)7344-7563(7461)
BA1012563.88Pollen concentrates7705±35(AMS)8413-8575(8487)
BA052214.75Shells6910±40 (AMS)7671-7833(7739)
BA1012574.75Pollen concentrates7735±35(AMS)8432-8587(8510)
BA052185.91Shells11175±50 (AMS)12875-13241(13069)
XQZhao (2005)0.45Organic matter3628±583731-4144(3946)
BA1012490.48Pollen concentrates5855±30(AMS)6567-6745(6678)
Zhao (2005)1.62Organic matter5176±685746-6177(5937)
Zhao (2005)2.28Organic matter3758±653926-4405(4126)
Zhao (2005)3.51Organic matter21101±22024539-25862(25220)
BA1012483.98Pollen concentrates22380±100(AMS)26301-27716(27063)
Zhao (2005)4.29Organic matter18803±20721816-23290(22431)
Zhao (2005)6.00Organic matter22158±18926052-27580(26618)
BA1012476.03Pollen concentrates21000±120(AMS)24575-25510(25045)
Zhao (2005)6.23Organic matter10400±8012029-12555(12275)
Zhao (2005)7.42Organic matter12688±11714237-15572(14992)
BA1012468.13Pollen concentrates15360±60(AMS)18499-18792(18619)
Zhao (2005)8.27Organic matter11650±11013290-13753(13512)
JTLLUG-03-080.98Organic matter6071±806744-7162(6939)
BA1012531.00Pollen concentrates8000±40(AMS)8663-9009(8875)
LUG-03-071.29Organic matter6350±1146987-7475(7271)
LUG-03-061.50Organic matter7410±1407952-8454(8224)
LUG-03-051.81Organic matter6688±1007419-7732(7558)
SKJBA1012390.58Pollen concentrates3630±25(AMS)3866-4070(3941)
Zhao (2005)0.93Organic matter2541±572366-2759(2605)
Zhao (2005)1.14Organic matter4808±705324-5659(5525)
Tab.1  Conventional and AMS C dates for the QTH01, QTH02, XQ, JTL and SKJ sections.
Calcite /%Aragonite /%Carbonate /%Feldspar/%Median/μmSilt/%Quartz/%Albite/%Muscovite/%Anorthite/%
QTH0116.656.3223.8524.4268.2846.3521.4013.5515.577.37
A(QTH01)1.000.001.0036.17155.9914.2942.1710.673.6721.00
B(QTH01)9.4413.2223.5630.4477.6340.9117.8919.7816.785.44
C(QTH01)7.603.8011.4038.20128.288.0719.2025.8023.807.00
D(QTH01)38.3911.8750.3511.8736.6159.6911.096.834.834.39
E(QTH01)3.180.005.3228.7335.9262.5528.4516.0527.687.64
QTH0217.5810.1228.1220.9279.4038.2120.7316.696.733.04
A(QTH02)10.005.0015.5021.25187.415.3024.0018.007.503.25
B(QTH02)14.6015.2031.0015.0049.8347.9218.8015.0011.400.00
C(QTH02)15.0010.0025.3337.67129.518.6422.3328.679.670.00
D(QTH02)33.8817.1351.0010.3841.3851.2614.759.134.131.25
E(QTH02)4.670.005.0031.3336.5255.7827.3321.334.339.33
XQ3.190.003.3328.1450.4343.0528.1415.2426.677.33
A(XQ)3.290.003.2931.719.2448.6624.2913.1425.4311.57
B(XQ)1.000.001.2037.40156.016.7534.6016.8016.8014.60
C(XQ)4.710.005.0020.4316.9959.2327.4315.8632.570.00
D(XQ)3.000.003.0019.50143.0415.9328.0016.5035.000.00
SKJ3.520.003.5233.95125.5018.4326.0014.8122.5213.86
A(SKJ)0.000.000.0031.83172.305.3727.0013.6724.8313.83
B(SKJ)14.000.0014.0037.33102.8927.6923.0016.3312.0014.00
C(SKJ)0.000.000.0028.00136.8610.1428.3312.6726.6711.33
D(SKJ)4.250.004.2529.0088.9531.3125.2511.7528.2510.75
E(SKJ)3.000.003.0042.0080.5530.6525.8019.0019.0017.80
JTL3.354.598.1231.12137.2125.0823.9416.7628.068.53
A(JTL)2.400.002.4031.20210.837.5532.2017.4025.006.40
B(JTL)3.330.004.0037.6725.4768.806.3322.0039.008.67
C(JTL)1.501.503.0032.50159.8313.7728.5014.0028.508.50
D(JTL)8.3323.6732.0014.6740.7357.2616.6710.3329.674.33
E(JTL)1.751.003.0037.75138.8815.1430.0018.2522.2514.25
Tab.2  Percentages of silt content (%), median grain-size (μm), carbonate content (%) and main mineralogical component for different phases in the QTH01, QTH02, XQ, SKJ and JTL sections.
Fig.3  Percentages of silt content (%), median grain-size (μm), carbonate content (%) and main mineralogical component in the QTH01 section, plotted against the depth. The grey bars indicate typical lacustrine layers with high carbonate content. The section is divided into A, B, C, D, and E five phases according to lithology, grain-size, carbonate content, and mineralogical composition. Ages marked in this figure are calibrated C ages /cal yr BP.
Fig.4  Percentages of silt content (%), median grain-size (μm), carbonate content (%) and main mineralogical component in the QTH02 section, plotted against the depth. The grey bars indicate typical lacustrine layers with high carbonate content. The section is divided into A, B, C, D, and E five phases according to lithology, grain-size, carbonate content, and mineralogical composition. Ages marked in this figure are calibrated C ages /cal yr BP.
Fig.5  Percentages of silt content (%), median grain-size (μm), carbonate content (%) and main mineralogical component in the XQ section, plotted against the depth. The grey bars indicate typical lacustrine layers with high carbonate content. The section is divided into A, B, C, and D four phases according to lithology, grain-size, carbonate content, and mineralogical composition. Ages marked in this figure are calibrated C ages /cal yr BP.
Fig.6  Percentages of silt content (%), median grain-size (μm), carbonate content (%) and main mineralogical component in the SKJ section, plotted against the depth. The grey bars indicate typical lacustrine layers with high carbonate content. The section is divided into A, B, C, D, and E five phases according to lithology, grain-size, carbonate content, and mineralogical composition. Ages marked in this figure are calibrated C ages /cal yr BP.
Fig.7  Percentages of silt content (%), median grain-size (μm), carbonate content (%) and main mineralogical component in the JTL section, plotted against the depth. The grey bars indicate typical lacustrine layers with high carbonate content. The section is divided into A, B, C, D, and E five phases according to lithology, grain-size, carbonate content, and mineralogical composition. Ages marked in this figure are calibrated C ages /cal yr BP.
1 Berger A, Loutre M F (1991). Insolation values for the climate of the last 10 million years. Quat Sci Rev , 10(4): 297-317
doi: 10.1016/0277-3791(91)90033-Q
2 Brown T A, Nelson D E, Mathewes R W, Vogel J S, Southon J R (1989). Radiocarbon dating of pollen by accelerator mass spectrometry. Quat Res , 32(2): 205-212
doi: 10.1016/0033-5894(89)90076-8
3 Cai Y, Tan L, Cheng H, An Z, Edwards R L, Kelly M J, Kong X, Wang X (2010). The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett , 291(1-4): 21-31
doi: 10.1016/j.epsl.2009.12.039
4 Chen F H, Cheng B, Zhao Y, Zhu Y, Madsen D B (2006). Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. Holocene , 16(5): 675-684
doi: 10.1191/0959683606hl951rp
5 Chen F H, Wu W, Holmes J, Madsen D B, Zhu Y, Jin M, Oviatt J G (2003). A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China. Chin Sci Bull , 48(14): 1401-1410
doi: 10.1360/03wd0245
6 Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wünnemann B (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev , 27: 351-364
doi: 10.1016/j.quascirev.2007.10.017
7 Chen F H, Zhu Y, Li J, Shi Q, Jin L, Wünemann B (2001). Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales: evidence from lake sediment document in Minqin Basin, NW China. Chin Sci Bull , 46(23): 1942-1947
doi: 10.1007/BF02901902
8 Chen J A, Wan G J, Zhang D, Zhang F, Huang R (2004). Environmental records of different time scales in lake-sediments: grain-size of sediments. Sci China Ser D , 47: 954-960
doi: 10.1360/03yd0160
9 Chen L H, Qu Y G (1992). Water-land Resources and Reasonable Development and Utilization in the Hexi Region. Beijing: Science Press (in Chinese)
10 China Meteorological Administration (1994). Atlas of the Climatic Resources of China. Beijing: China Atlas Press (in Chinese)
11 Dean W E (1999). The carbon cycle and biogeochemical dynamics in lake sediments. J Paleolimnol , 21(4): 375-393
doi: 10.1023/A:1008066118210
12 Ding H, Zhang J (2005). Goechemical properties and evolution of groundwater beneath the Hexi Corridor, Gansu Province. Arid Zone Research , 22: 24-28 (in Chinese)
13 Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett , 233(1-2): 71-86
doi: 10.1016/j.epsl.2005.01.036
14 Fowell S J, Hansen B C S, Peck J A, Khosbayar P, Ganbold E (2003). Mid to late-Holocene climate evolution of the Lake Telmen basin, North Central Mongolia, based on palynological data. Quat Res , 59(3): 353-363
doi: 10.1016/S0033-5894(02)00020-0
15 Gasse F, Arnold M, Fontes J C, Fort M, Gibert E, Huc A, Li B, Li Y, Liu Q, Melieres F, van Campo E, Wang F, Zhan Q (1991). A 13,000 year climate record from western Tibet. Nature , 353(6346): 742-745
doi: 10.1038/353742a0
16 Gierlowski-Kordesch E, Kelts K (1994). Global Geological Record of Lake Basins. Cambridge: Cambridge University Press
17 Gorham E, Dean W E, Sanger J E (1983). The chemical composition of lakes in the north-central United States. Limnol Oceanogr , 28(2): 287-301
doi: 10.4319/lo.1983.28.2.0287
18 Hammer U T (1986). Saline Lake Ecosystems of the World. Boston: Junk Publishers
19 Jiang W Y, Liu T S (2007). Timing and spatial distribution of mid-Holocene drying over northern China: Response to a southeastward retreat of the East Asian Monsoon. J Geophys Res, D, Atmospheres , 112(D24): 1-8
doi: 10.1029/2007JD009050
20 Lenton T M (2000). Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus , 52(5): 1159-1188
doi: 10.1034/j.1600-0889.2000.01104.x
21 Lerman A (1978). Lake: Chemistry, Geology, Physics. Berlin: Springer-Verlag
22 Li E (2011). Comparative study of the sediment characteristics in the Badain Jaran and Tengger Deserts. Xi’an: Doctoral Thesis of Shanxi Normal University (in Chinese)
23 Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y (2008). Cryospheric change in China. Global Planet Change , 62(3-4): 210-218
doi: 10.1016/j.gloplacha.2008.02.001
24 Li Y, Wang N, Cheng H, Zhao Q, Long H (2009). Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China. Boreas , 38(2): 349-361
doi: 10.1111/j.1502-3885.2008.00063.x
25 Liu C L, Wang M L, Jiao P C, Li S D, Chen Z (2006). Features and formation mechanism of faults and potash-forming effect in the Lop Nur salt lake, Xinjiang, China. Acta Geol Sin , 80: 936-943
26 Liu X Q, Dong H L, Rech J A, Matsumoto R, Yang B, Wang Y B (2008a). Evolution of Chaka Salt Lake in NW China in response to climatic change during the latest Pleistocene-Holocene. Quat Sci Rev , 27(7-8): 867-879
doi: 10.1016/j.quascirev.2007.12.006
27 Liu X Q, Herzschuh U, Shen J, Jiang Q, Xiao X (2008b). Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res , 70(3): 412-425
doi: 10.1016/j.yqres.2008.06.005
28 Liu X Q, Shen J, Wang S M, Wang Y B, Liu W G (2007). Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the late Glacial. Chin Sci Bull , 52(4): 539-544
doi: 10.1007/s11434-007-0086-3
29 Liu Z (2000). Research on material composition of Salt Lakes in Tengger Desert region. Journal of Salt Lake Research , 8: 21-26 (in Chinese)
30 Matter M, Anselmetti F S, Jordanoska B, Wagner B, Wessels M, Wuest A (2010). Carbonate sedimentation and effects of eutrophication observed at the Kalista subaquatic springs in Lake Ohrid (Macedonia). Biogeosciences , 7(11): 3755-3767
doi: 10.5194/bg-7-3755-2010
31 McConnaughey T E D A, Labaugh J W, Rosenberry D O, Striegl R G, Reddy M M, Schuster P F, Carter V (1994). Carbon budget for a groundwater-fed lake: calcification supports summer photosynthesis. Limnol Oceanogr , 39(6): 1319-1332
doi: 10.4319/lo.1994.39.6.1319
32 Meyers P A, Ishiwatari R (1993). Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem , 20(7): 867-900
doi: 10.1016/0146-6380(93)90100-P
33 Mischke S, Aichner B, Diekmann B, Herzschuh U, Plessen B, Wünnemann B, Zhang C (2010). Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chem Geol , 276(1-2): 95-103
doi: 10.1016/j.chemgeo.2010.06.003
34 Moore P D, Webb J A, Collinson M E (1991). Pollen Analysis. Oxford: Blackwell
35 Morinaga H, Itota C, Isezaki N, Goto H, Yaskawa K, Kusakabe M, Liu J, Gu Z, Yuan B, Cong S (1993). Oxygen-18 and carbon-13 records for the last 14 000 years from lacustrine carbonates of Siling-Co (lake) in the Qinghai-Tibetan Plateau. Geophys Res Lett , 20(24): 2909-2912
doi: 10.1029/93GL02982
36 Morrill C, Overpeck J T, Cole J E, Liu K, Shen C, Tang L (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quat Res , 65(2): 232-243
doi: 10.1016/j.yqres.2005.02.014
37 Pachur H J, Wünnemann B, Zhang H (1995). Lake Evolution in the Tengger Desert, Northwestern China, during the last 40,000 Years. Quat Res , 44(2): 171-180
doi: 10.1006/qres.1995.1061
38 Peng Y J, Xiao J L, Nakamura T, Liu B L, Inouchi Y (2005). Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth Planet Sci Lett , 233(3-4): 467-479
doi: 10.1016/j.epsl.2005.02.022
39 Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010). The impacts of climate change on water resources and agriculture in China. Nature , 467(7311): 43-51
doi: 10.1038/nature09364 pmid:20811450
40 Schmalz R F (1966). Environments of marine evaporite deposition. Miner Ind , 35: 1-7
41 Schnurrenberger D, Russell J, Kelts K (2003). Classification of lacustrine sediments based on sedimentary components. J Paleolimnol , 29(2): 141-154
doi: 10.1023/A:1023270324800
42 Shen J, Liu X, Wang S, Matsumoto R (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years. Quat Int , 136(1): 131-140
doi: 10.1016/j.quaint.2004.11.014
43 Shi Y, Shen Y, Kang E, Li D, Ding Y, Zhang G, Hu R (2007). Recent and future climate change in northwest China. Clim Change , 80(3-4): 379-393
doi: 10.1007/s10584-006-9121-7
44 Sun D (1990). “Tear Drop Pattern” potash deposits in lacustrine facies. Chin J Oceanology Limnol , 8(1): 50-65
doi: 10.1007/BF02846452
45 Sun D, Bloemendal J, Rea D K, Vandenberghe J, Jiang F, An Z, Su R (2002). Grain size distribution function of polymodal sediments in hydraulic and Aeolian environments and numerical partitioning of the sedimentary components. Sediment Geol , 152(3-4): 263-277
doi: 10.1016/S0037-0738(02)00082-9
46 Wang H (1987). The water resources of lakes in China. Chin J Oceanology Limnol , 5(3): 263-280
doi: 10.1007/BF02843990
47 Wang K, Jiang H, Zhao H (2005a). Atmospheric water vapor transport from westerly and monsoon over the Northwest China. Advances in Water Science , 16: 432-438 (in Chinese)
48 Wang Y, Cheng H, Edwards R L, He Y, Kong X, An Z, Wu J, Kelly M J, Dykoski C A, Li X (2005b). The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science , 308(5723): 854-857
doi: 10.1126/science.1106296 pmid:15879216
49 Wen R L, Xiao J L, Chang Z G, Zhai D Y, Xu Q H, Li Y C, Itoh S (2010). Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas , 39(2): 262-272
doi: 10.1111/j.1502-3885.2009.00125.x
50 Williams W D (1991). Chinese and Mongolian saline lakes: a limnological overview. Hydrobiologia , 210(1-2): 39-66
doi: 10.1007/BF00014322
51 Wünnemann B, Mischke S, Chen F H (2006). A Holocene sedimentary record from Bosten Lake, China. Palaeogeogr Palaeoclimatol Palaeoecol , 234(2-4): 223-238
doi: 10.1016/j.palaeo.2005.10.016
52 Wünnemann B, Pachur H J, Zhang H C (1998). Climatic and environmental changes in the deserts of Inner Mongolia, China, since the Late Pleistocene. In: Alsharhan A S, Glennie K W, Whittle G L, Kendall C G St C, eds . Quaternary Deserts and Climatic Changes. Balkema, Rotterdaman , 381-394
53 Xiao J L, Si B, Zhai D Y, Itoh S, Lomtatidze Z (2008). Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. J Paleolimnol , 40(1): 519-528
doi: 10.1007/s10933-007-9179-x
54 Xiao J L, Xu Q H, Nakamura T, Yang X L, Liang W D, Inouchi Y (2004). Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quat Sci Rev , 23(14-15): 1669-1679
doi: 10.1016/j.quascirev.2004.01.005
55 Zhang H C, Ma Y Z, Li J J, Qi Y, Chen G J, Fang H B, Wünnemann B, Pachur H J (2001). Palaeolake evolution and abrupt climate changes during last glacial period in NW China. Geophys Res Lett , 28(16): 3203-3206
doi: 10.1029/2000GL012458
56 Zhang H C, Peng J L, Ma Y, Chen G J, Feng Z D, Li B, Fan H F, Chang F Q, Lei G L, Wünnemann B (2004). Late quaternary palaeolake-levels in Tengger Desert, NW China. Palaeogeogr Palaeoclimatol Palaeoecol , 211(1-2): 45-58
doi: 10.1016/j.palaeo.2004.04.006
57 Zhang H C, Wünnemann B, Ma Y Z, Peng J L, Pachur H J, Li L J, Qi Y, Chen G J, Fang H B, Feng Z D (2002). Lake level and climate changes between 42,000 and 18,000 C-14 yr BP in the Tengger Desert, Northwestern China. Quat Res , 58(1): 62-72
doi: 10.1006/qres.2002.2357
58 Zhao Q (2005). Environment changes of the Shiyang River drainage since the last deglaciation. Lanzhou: Doctoral Thesis of Lanzhou University (in Chinese)
59 Zhao S Q (1983). A new scheme for comprehensive physical regionalization in China. Acta Geogr Sin , 38: 1-10 (in Chinese)
60 Zhao Y, Yu Z, Chen F H, Li J (2008). Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China. J Arid Environ , 72(11): 2054-2064
doi: 10.1016/j.jaridenv.2008.06.016
61 Zheng M, Tang J, Liu J, Zhang F (1993). Chinese saline lakes. Hydrobiogia , 267(1-3): 23-36
doi: 10.1007/BF00018789
62 Zheng M, Zhao Y, Liu J (2000). Palaeoclimatic indicators of China’s Quaternary saline lake sediments and hydrochemistry. Acta Geol Sin , 74: 259-265
63 Zhou W, Donahua D J, Jull A J T (1999). Radiocarbon AMS dating of pollen concentrated from eolian sediments: implications for monsoon climate change since the late Quaternary. Radiocarbon , 39: 19-26
[1] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[2] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[3] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[4] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[5] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[6] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[7] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[8] Xin JIA,Shuangwen YI,Yonggang SUN,Shuangye WU,Harry F. LEE,Lin WANG,Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[9] Le Wang,Shenglian Guo,Xingjun Hong,Dedi Liu,Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[10] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
[11] Guanghui DONG,Honggao LIU,Yishi YANG,Ying YANG,Aifeng ZHOU,Zhongxin WANG,Xiaoyan REN,Fahu CHEN. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
[12] Jing WU,Lichun TANG,Rayman MOHAMED,Qianting ZHU,Zheng WANG. Modeling and assessing international climate financing[J]. Front. Earth Sci., 2016, 10(2): 253-263.
[13] He ZHANG,Fulu TAO,Dengpan XIAO,Wenjiao SHI,Fengshan LIU,Shuai ZHANG,Yujie LIU,Meng WANG,Huizi BAI. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China[J]. Front. Earth Sci., 2016, 10(2): 315-327.
[14] Zhuoran LIANG,Tingting GU,Zhan TIAN,Honglin ZHONG,Yuqi LIANG. Agro-climatic adaptation of cropping systems under climate change in Shanghai[J]. Front. Earth Sci., 2015, 9(3): 487-496.
[15] Djakanibé Désiré TRAORÉ,Yansheng GU,Humei LIU,Ceven SHEMSANGA,Jiwen GE. Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China[J]. Front. Earth Sci., 2015, 9(2): 268-275.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed