Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (4) : 607-620    https://doi.org/10.1007/s11707-016-0605-0
RESEARCH ARTICLE
Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth
David BRAND1,Chathurika WIJEWARDANA1,Wei GAO2,K. Raja REDDY1()
1. Department of Plant and Soil Sciences, Mississippi State University, Starkwille, MS 39762, USA
2. USDA UVB Monitoring and Research Program, Natural Resource Ecology Laboratory, and Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523, USA
 Download: PDF(1188 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Interactive effects of multiple environmental stresses are predicted to have a negative effect on cotton growth and development and these effects will be exacerbated in the future climate. The objectives of this study were to test the hypothesis that cotton cultivars differ in their responses to multiple environmental factors of (CO2) [400 and 750 µmol·mol−1 (+(CO2)], temperature [28/20 and 20/12°C (−T)], and UV−B radiation [0 and 10 kJ·m−2·d−1 (+UV−B)]. A genetic and molecular standard (TM-1) and three modern cotton cultivars (DP1522B2XF, PHY496W3R, and ST4747GLB2) were grown in eight sunlit, controlled environment chambers with control treatment 400 µmol·mol−1 [CO2], 28/21°C temperature, and 0 kJ UV−B. The results showed significant differences among the cultivars for most of the shoot and root parameters. Plants grown under low temperature alone or as a combination with+UV−B treatment caused more detrimental effects on root and shoot vigor. Although the elevated CO2 treatments weakened the damaging effects of higher UV−B levels on cotton growth on all cultivars, increased CO2 could not mask the negative effects of low temperature. When comparing all cultivars, genetic standard TM-1 produced the smallest values for the majority of traits under CO2, UV−B, and low temperature either alone or in combination with other treatments. Based on principal component analysis, the four cultivars were classified as tolerant (DP1522B2XF), intermediate (PHY496W3R and ST4747GLB2) and sensitive (TM-1) to multiple environmental stresses.Low temperature was identified as the most damaging treatment to cotton early seedling vigor while elevated CO2 caused the least. Existing variability of cotton cultivars in response to multiple environmental stresses could allow for selection of cultivars with the best coping ability and higher lint yield for future climate change environments.

Keywords Cotton      Climate change      winRHIZO      Principal component analysis.      Stress tolerance.      Abbreviations: DAP, Days after planting      SPAR- Soil-Plant-Atmosphere-Research      PCA, Principal component analysis      SGR, Seed germination rate      PH, Plant height      NOD, Node number      NAR, Node addition rate      LA, Leaf area      LW, Leaf weight      SW, Shoot weight      RW, Root weight      TD, Total dry weight      RS, Root/shoot ratio      RL, Root length      RSA, Root surface area      RD, Root diameter      RLV, Root length per soil volume      RV, Root volume      RT, Number of tips      RF, Number of forks      RC, Number of crossings      SPAD, Total chlorophyll      PHOL, phenolic content     
Corresponding Author(s): K. Raja REDDY   
Online First Date: 06 September 2016    Issue Date: 04 November 2016
 Cite this article:   
David BRAND,Chathurika WIJEWARDANA,Wei GAO, et al. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0605-0
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I4/607
Treatments Mean Temperature/°C [CO2], /(µmol·mol−1) UV−B/(kJ·m−2·d−1)
Control
–T
+UV−B
+CO2
+CO2 +UV−B
24.41±0.15
17.50±0.17
24.28±0.18
24.37±0.16
24.48±0.18
458.35±2.08
434.24±2.70
417.23±2.29
737.64±1.11
730.98±1.32
0
0
10
0
10
+CO2 −T 17.59±0.17 729.42±1.23 0
–T+UV−B 17.55±0.17 457.32±2.77 10
+CO2 –T+UV−B 17.35±0.17 740.16±1.22 10
Tab.1  The treatments, mean day/night temperatures, daily CO2, and UVB treatments for each chamber.
Source of variation SGR PH NOD NAR LA LW SW RW TD RS RL RSA RD RLV RV RT RF RC SPAD PHOL
CO2 NS NS NS NS NS ** NS *** *** NS NS * ** NS *** NS NS NS NS ***
T NS NS *** NS *** *** *** *** *** ** *** *** * *** *** *** *** *** *** NS
T*CO2 NS NS NS NS NS NS NS NS ** NS NS NS NS NS NS NS NS NS NS NS
UV−B NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS *** NS
UV−B*CO2 NS NS NS NS ** ** NS NS ** NS ** NS *** NS NS NS NS NS NS NS
T*UV−B ** ** NS NS NS NS NS NS NS NS NS NS * NS NS NS NS NS *** NS
T*UV−B*CO2 * ** NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS **
Cultivar (Cul) *** *** NS *** *** *** NS NS ** NS *** *** *** *** *** *** *** *** NS NS
Cul* CO2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS ** NS
Cul* T NS NS NS ** *** NS NS NS NS NS NS NS NS NS NS * * * NS NS
Cul* T*CO2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Cul* UV−B NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Cul* UV−B*CO2 NS NS NS NS NS NS NS NS NS NS NS NS *** NS NS NS NS NS NS NS
Cul* T*UV−B * ** NS NS NS NS NS NS NS NS * NS NS * NS ** NS ** NS NS
Cul* T*UV−B*CO2 NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS
Tab.2  The analysis of variance across the treatments of carbon dioxide concentration ([CO2]), temperature (T), UV−B radiation (UV−B), and Hybrid (Hy), and their interactions on corn vegetative, physiological, and photosynthetic traits; seed germination rate (SGR), plant height (PH), node number (NOD), node addition rate (NAR), leaf area (LA), leaf weight (LW), shoot weight (SW), root weight (RW), total dry weight (TD), root/shoot ratio (RS), root length (RL), root surface area (RSA), root diameter (RD), root length per soil volume (RLV), root volume (RV), number of tips (RT), number of forks (RF), number of crossings (RC), total chlorophyll (SPAD), phenolic content (PHOL).
Fig.1  Impact of CO2 concentration (control, 400 µmol·mol−1 and+ CO2, 750 µmol·mol−1), low temperature day/night (control, 28/20°C and −T, 20/12°C), and UV−B radiation (control, 0 and+UV−B, 10 kJ·m−2·d−1), and their interactions on (a) plant height, (b) leaf area, and (c) total dry weight for four cotton cultivars (TM-1, DP1522 B2XF, PHY496W3R, and ST4747GLB2). Bars indicate standard errors of the mean±6 replications.
Fig.2  Impact of CO2 concentration (control, 400 µmol·mol−1 and+ CO2, 750 µmol·mol−1), low temperature day/night (control, 28/20°C and −T, 20/12°C), and UV−B radiation (control, 0 and+UV−B, 10 kJ·m−2·d−1), and their interactions on (a) root length, (b) root volume, and (c) number of tips for four cotton cultivars (TM-1, DP1522 B2XF, PHY496W3R, and ST4747GLB2). Bars indicate standard errors of the mean±6 replications.
Fig.3  Impact of CO2 concentration (control, 400 µmol·mol−1 and+ CO2, 750 µmol·mol−1), low temperature day/night (control, 28/20°C and −T, 20/12°C), and UV−B radiation (control, 0 and+UV−B, 10 kJ·m−2×d−1), and their interactions on (a) SPAD, and (b) phenolic, for four cotton cultivars (TM-1, DP1522 B2XF, PHY496W3R, and ST4747GLB2). Bars indicate standard errors of the mean±6 replications.
Treatments Eigenvectors
PC1 PC2 PC3 PC4
+CO2 0.073 0.866 0.121 0.090
+UV−B+CO2 0.360 0.227 −0.590 0.303
+UV−B 0.394 0.033 0.532 0.114
–T+UV−B 0.445 0.104 0.179 0.205
–T+CO2 0.393 −0.287 −0.412 0.246
–T+UV+CO2 0.396 −0.314 0.362 0.114
–T 0.448 0.074 −0.149 −0.878
Tab.3  Principal component analysis eigenvectors of PC1, PC2, PC3, and PC4 of 4 cotton cultivars for seven different treatments and the variation accounted by each eigenvector.
Fig.4  A plot showing principal component analysis (PCA) for the first two principal component (PC) scores, PCA1 vs. PCA2 related to the classification of 4 cotton cultivars (solid symbols) for multiple stress tolerance. Cotton cultivars were classified mainly into 3 groups as tolerant, intermediate, and sensitive depending on the contribution of all the parameters tested under each of the treatment. One to four numbers given under each of solid circle represent the relative ranking of each hybrid for multiple stress tolerance.
Fig.5  A plot showing principal component analysis (PCA) for the first two principal component (PC) scores, PC1 vs. PC2 related to the distribution of 19 parameters (solid circles) for multiple stress tolerance. The coefficients (PC1 and PC2) for the parameters are distributed across the ordination space that reflects the contribution of the parameters in determination of multiple stress tolerance. The coefficients used in the analysis were seed germination rate (SGR), plant height (PH), node number (NOD), node addition rate (NAR), leaf area (LA), leaf weight (LW), shoot weight (SW), root weight (RW), total dry weight (TD), root/shoot ratio (RS), root length (RL), root surface area (RSA), root diameter (RD), root volume (RV), number of root tips (RT), number of root forks (RF), number of root crossings (RC), total chlorophyll (SPAD), and phenolic content (PHOL). The coefficient values for parameters were multiplied by ten to obtain a clear and superimposed figure.
Fig.6  Representative scanned root images from single and combined stress treatments for multiple stress tolerant DP1522B2XF and sensitive TM-1 cotton cultivars harvested at 20 d after planting. Images represent (A and I) control condition (CO2−400 µmol·mol−1, T−28/20°C, and UV−B, 0 kJ·m−2·d−1), (B and J) +CO2 (750 µmol·mol−1), (C and K) +UV−B (10 kJ·m−2·d−1), (D and L) –T (20/12°C), (E and M) +CO2 + UV−B, (F and N) +CO2 – T, (G and O) +UV−B – T, and (H and P) +CO2 + UV−B – T.
1 Arndt C H (1945). Temperature-growth relations of the roots and hypocotyls of cotton seedlings. Plant Physiol, 20(2): 200–220
https://doi.org/10.1104/pp.20.2.200
2 Bange M P, Constable G A, Gordon S G, Naylor G R S, Van der Sluijs M H J (2009). Importance of fiber quality. In M.P Bange et al. (ed.) FIBREpak A guide to improving Australian cotton fiber quality. CSIRO and the Cotton Catchment Communities Coop. Research Centre, Narrabri, NSW, Australia, 30–42
3 Bange M P, Milroy S P (2004a). Impact of short term exposure to cold temperatures on early development of cotton (Gossypium hirsutum L.). Aus. J. Ag. Res., 55(6): 655–664
https://doi.org/10.1071/AR03221
4 Bowes G (1996). Photosynthetic responses to changing atmospheric carbon dioxide. In: N.R. Baker (ed.). Photosynthesis and the Environment. Advances in Photosynthesis Vol. 5, Kluwer, Dordrecht, Netherlands, 387–407
5 Christiansen M N, Thomas R O (1969). Season-long effects of chilling treatments applied to germinating cottonseed. Crop Sci, 9(5): 672–673
https://doi.org/10.2135/cropsci1969.0011183X000900050052x
6 Gao Z, Gao W, Chang N (2010). Comparative analyses of the ultraviolet-B flux over the continental United State based on the NASA total ozone mapping spectrometer data and USDA groundbased measurements. J Appl Remote Sens, 4(1): 1–18
https://doi.org/10.1117/1.3507249
7 Hewitt E J (1952). Sand and water culture: methods used in the study of plant nutrition. Technical Communication No. 22, Commonwealth bureau of horticulture and plantation, East Malling, Maidstone. Kent Publishers, Commonwealth agricultural bureaux farmham royal, Bucks, England, 187–190
8 Kakani V G, Reddy K R, Zhao D, Gao W (2004). Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide. Physiol Plant, 121(2): 250–257
https://doi.org/10.1111/j.0031-9317.2004.00314.x
9 Kakani V G, Reddy K R, Zhao D, Mohammed A R (2003). Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot (Lond), 91(7): 817–826
https://doi.org/10.1093/aob/mcg086
10 Kaspar T E, Bland W L (1992). Soil temperature and root growth. Soil Sci, 154(4): 290–299
https://doi.org/10.1097/00010694-199210000-00005
11 Kimball B A, Mauney J R (1993). Response of cotton to varying CO2, irrigation, and nitrogen: yield and growth. Agron J, 85(3): 706–712
https://doi.org/10.2134/agronj1993.00021962008500030035x
12 Koti S, Reddy K R, Kakani V G, Zhao D, Gao W (2007). Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. Environ Exp Bot, 60(1): 1–10
https://doi.org/10.1016/j.envexpbot.2006.05.001
13 Koti S, Reddy K R, Kakani V G, Zhao D, Reddy V R (2005). Interactive effects of carbon dioxide, temperature and ultraviolet-B radiation on flower and pollen morphology, quantity and quality of pollen in soybean (Glycine max L.) genotypes. J Exp Bot, 56: 725–736
https://doi.org/10.1093/jxb/eri044
14 Lokhande S, Reddy K R (2014). Reproductive and fiber quality responses of Upland cotton to moisture deficiency. Agron J, 106(3): 1060–1069
https://doi.org/10.2134/agronj13.0537
15 Mark U, Tevini M (1996). Combination effects of UV-B radiation and temperature on sunflower (Helianthus annuus L.) and maize (Zea mays L.) seedlings. J Plant Physiol, 148: 49–56
https://doi.org/10.1016/S0176-1617(96)80293-8
16 McMichael B L, Burke J J (1994). Metabolic activity of cotton roots in response to temperature. Environ Exp Bot, 34(2): 201–206
https://doi.org/10.1016/0098-8472(94)90039-6
17 Mujahid H, Pendarvis K, Reddy J S, Nallamilli B R R, Reddy K R, Nanduri B, Peng Z (2016). Comparative proteomic analysis of cotton fiber development and protein extraction method comparison in late stage fibers. Proteomes, 4(1): 7
https://doi.org/10.3390/proteomes4010007
18 Nedunchezhian N, Kulandaivelu G (1996). Effects of ultraviolet-B enhanced radiation and temperature on growth and photochemical activities in Vigna ungiculata. Biol Plant, 38(2): 205–214
https://doi.org/10.1007/BF02873847
19 NOAA (2014). National climatic assessment. U.S. global research program. Accessed on <Date>1/7/2016</Date>.
20 Prior S A, Rogers H H, Runion G B, Hendrey G R (1994a). Free-air CO2 enrichment of cotton: Vertical and lateral root distribution patterns. Plant Soil, 165(1): 33–44
https://doi.org/10.1007/BF00009960
21 Prior S A, Rogers H H, Runion G B, Kimball B A, Mauney J R, Lewin K F, Nagy J, Hendrey G R (1995). Free-air CO2 enrichment of cotton: root morphological characteristics. J Environ Qual, 24(4): 678–683
https://doi.org/10.2134/jeq1995.00472425002400040019x
22 Prior S A, Rogers H H, Runion G B, Mauney J R (1994). Effects of free-air enrichment on cotton root growth. Agric Meteorol, 70(1-4): 69–86
https://doi.org/10.1016/0168-1923(94)90048-5
23 Pritchard S G, Prior S A, Rogers H H, Davis M A, Runion G B, Popham T W (2006). Effects of elevated atmospheric CO2 on root dynamics and productivity of sorghum grown under conventional and conservation agricultural management practices. Agric Ecosyst Environ, 113(1-4): 175–183
https://doi.org/10.1016/j.agee.2005.09.010
24 Reddy A R, Reddy K R, Hodges H F (1998). Interactive effects of elevated carbon dioxide and growth temperature on photosynthesis in cotton leaves. Plant Growth Regul, 26(1): 33–40
https://doi.org/10.1023/A:1006035517185
25 Reddy K R, Hodges H F, McCarty W H, McKinion J M (1996). Weather and cotton growth: Present and future. Mississippi Agricultural and Forestry Experiment Station. Mississippi State University, Mississippi State, Bulletin no: 1061, pp. 23
26 Reddy K R, Hodges H F, McKinion J M, Wall G W (1992a). Temperature effects of Pima cotton growth and development. Agron J, 84(2): 237–243
https://doi.org/10.2134/agronj1992.00021962008400020022x
27 Reddy K R, Hodges H F, Read J J, McKinion J M, Baker J T, Tarpley L, Reddy V R (2001). Soil–plant–atmosphere–research (SPAR) facility: a tool for plant research and modeling. Biotronics, 30: 27–50
28 Reddy K R, Hodges H F, Reddy V R (1992b). Temperature effects on cotton fruit retention. Agron J, 84(1): 26–30
https://doi.org/10.2134/agronj1992.00021962008400010006x
29 Reddy K R, Kakani V G, Zhao D, Koti S, Gao W (2004). Interactive effects of ultraviolet-B Radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance. Photochem Photobiol, 79(5): 416–427
https://doi.org/10.1562/2003-11-19-RA.1
30 Reddy K R, Kakani V G, Zhao D, Mohammed A R, Gao W (2003). Cotton responses to ultraviolet-B radiation: Experimentation and algorithm development. Agric Meteorol, 120(1-4): 249–266
https://doi.org/10.1016/j.agrformet.2003.08.029
31 Reddy K R, Prasad P V V, Kakani V G (2005). Crop responses to elevated carbon dioxide and interactions with temperature. Cotton. J Crop Improv, 13(1-2): 157–191
https://doi.org/10.1300/J411v13n01_08
32 Reddy V R (1997). Root growth of cotton as influenced by CO2 and temperature. Biology of root formation and development. Ed Aktman A. and Waisel Y. Plenum press, New York, 237–241
33 Reddy V R, Reddy K R, Acock M C, Trent A (1994). Carbon dioxide enrichment and temperature effects on root growth in cotton. Biotronics, 23: 47–57
34 Reddy V R, Reddy K R, Baker D N (1991). Temperature effects on growth and development of cotton during the fruiting period. Agron J, 83(1): 211–217
https://doi.org/10.2134/agronj1991.00021962008300010050x
35 Reddy V R, Reddy K R, Hodges H F (1995). Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water use efficiency. Field Crops Res, 41(1): 13–23
https://doi.org/10.1016/0378-4290(94)00104-K
36 Rogers H H, Peterson C M, McCrimmon J N, Cure J D (1992b). Response of plant roots to elevated atmospheric carbon dioxide. Plant Cell Environ, 15(6): 749–752
https://doi.org/10.1111/j.1365-3040.1992.tb01018.x
37 Sanders P L, Markhart A H III (2001). Root system functions during chilling temperatures: Injury and acclimation. In: A.S. Basra (ed.). Crop responses and adaptations to temperature stress. The Haworth Press, Inc., Binghamton, New York, USA, 77–90
38a Singh R P, Prasad P V, Sunita K, Giri S N, Reddy K R (2007). Influence of high temperature and Breeding for heat tolerance in Cotton: A review. advances in agronomy, 93: 313–385
38 Singh S K, Kakani V G, Brand D, Baldwin B, Reddy K R (2008). Assessment of cold and heat tolerance of winter-grown canola (Brassica napus L.) cultivars by pollen-based parameters. J Agron Crop Sci, 194(3): 225–236
https://doi.org/10.1111/j.1439-037X.2008.00309.x
39 Stelly D M, Saha S, Raska D A, Jenkins J N, McCarty J C Jr, Gutierrez O A (2005). Registration of 17 Upland (Gossypium hirsutum) cotton germplasm lines distomic for different G. barbadense chromosome or arm substitutions. Crop Sci, 45(6): 2663–2666
https://doi.org/10.2135/cropsci2004.0642
40 Tevini M, Mark U, Saile-Mark M (1991). Effects of enhanced solar UV-B radiation on growth and function of crop plant seedlings. Curr. Top. Plant Biochem. Physiol., 10: 13–31
41 Wijewardana C, Henry W B, Gao W, Reddy K R (2016a). Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development. Photochem Photobiol, 160: 198–209
https://doi.org/10.1016/j.jphotobiol.2016.04.004
42 Wijewardana C, Henry W B, Hock M, Reddy K R (2016b). Growth and physiological trait variation among corn (Zea mays L.) hybrids for cold tolerance. Can J Plant Sci, 96: 639–656
https://doi.org/10.1139/cjps-2015-0286
43 Wijewardana C, Hock M, Henry W B, Reddy K R (2015). Screening corn hybrids for cold tolerance using morphological traits for early season seeding. Crop Sci, 19: 75–78
44 World Meteorological Organization Geneva, Switzerland. (2011). Executive summary: Scientific assessment of Ozone depletion. pp. 46. Reprinted from scientific assessment of Ozone depletion: 2010, Global Ozone research and monitoring project–Report No. 52, pp. 516, World Meteorological Organization, Geneva, Switzerland
45 Zhao D, Reddy K R, Kakani V G, Read J J, Sullivan J H (2003). Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions. Plant Cell Environ, 26(5): 771–782
https://doi.org/10.1046/j.1365-3040.2003.01019.x
[1] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[2] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[3] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[4] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[5] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[6] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[7] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[8] Xin JIA,Shuangwen YI,Yonggang SUN,Shuangye WU,Harry F. LEE,Lin WANG,Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[9] Le Wang,Shenglian Guo,Xingjun Hong,Dedi Liu,Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[10] Guanghui DONG,Honggao LIU,Yishi YANG,Ying YANG,Aifeng ZHOU,Zhongxin WANG,Xiaoyan REN,Fahu CHEN. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
[11] Jing WU,Lichun TANG,Rayman MOHAMED,Qianting ZHU,Zheng WANG. Modeling and assessing international climate financing[J]. Front. Earth Sci., 2016, 10(2): 253-263.
[12] He ZHANG,Fulu TAO,Dengpan XIAO,Wenjiao SHI,Fengshan LIU,Shuai ZHANG,Yujie LIU,Meng WANG,Huizi BAI. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China[J]. Front. Earth Sci., 2016, 10(2): 315-327.
[13] Zhuoran LIANG,Tingting GU,Zhan TIAN,Honglin ZHONG,Yuqi LIANG. Agro-climatic adaptation of cropping systems under climate change in Shanghai[J]. Front. Earth Sci., 2015, 9(3): 487-496.
[14] Djakanibé Désiré TRAORÉ,Yansheng GU,Humei LIU,Ceven SHEMSANGA,Jiwen GE. Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China[J]. Front. Earth Sci., 2015, 9(2): 268-275.
[15] Shuyan LIU,Xin-Zhong LIANG,Wei GAO,Thomas J. STOHLGREN. Regional climate model downscaling may improve the prediction of alien plant species distributions[J]. Front. Earth Sci., 2014, 8(4): 457-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed