Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (4) : 669-682    https://doi.org/10.1007/s11707-015-0575-7
RESEARCH ARTICLE
Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China
Guanghui DONG1(),Honggao LIU1,2,Yishi YANG1,Ying YANG1,Aifeng ZHOU1,Zhongxin WANG3,Xiaoyan REN3,Fahu CHEN1
1. Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
2. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
3. Qinghai Provincial Institute of Cultural Relics and Archaeology, Xining 810007, China
 Download: PDF(3708 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The study of the history of human activities in ancient cities has provided valuable evidences for understanding the evolution of human-land relations during the late Holocene. Numerous ancient cities were discovered through archaeological surveys of the east Qinghai Province, located on the northeastern border of the Tibetan Plateau, China; however , the mystery of when or why these cities were built remains unsolved. As recorded in this paper, we sampled reliable dating materials from 47 ancient cities in the area, determined their ages by radiocarbon dating, and compared the dating results with historical documents and high resolution paleoclimate records to explore the influencing factors for the development of these ancient cities. The 54 radiocarbon dates indicated that most of these cities were built or repaired during the Han Dynasty (202 BC?AD 220), Tang Dynasty (AD 618?AD 907), the Five Dynasties and Ten Kingdoms period (AD 907?AD 960), the Song dynasty (AD 960?AD 1279), and the Ming Dynasty (AD 1368?AD 1644). The radiocarbon dates correspond well with historical records of the area. Our work suggests the ancient cities in east Qinghai Province were likely built primarily for military defense, and may have also have been affected by climate change.

Keywords radiocarbon dating      ancient city      historic records      war      climate change     
Corresponding Author(s): Guanghui DONG   
Online First Date: 18 September 2016    Issue Date: 04 November 2016
 Cite this article:   
Guanghui DONG,Honggao LIU,Yishi YANG, et al. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0575-7
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I4/669
Fig.1  Distribution of the dated ancient cities in east Qinghai Province. 1 Gufang; 2 Langshetou; 3 Biandugou; 4 Sanjiaocheng; 5 Niangmo; 6 Baojia; 7 Shancheng; 8 Guchengyuan; 9 Xiachuankou; 10 Heichengzi; 11 Beigu; 12 Qihouang; 13 Hei; 14 Heichengzi; 15 Yangjiacheng; 16 Xinchengbao; 17 Duobaxin; 18 Duobajiu; 19 Heichengbao; 20 Sanjiao; 21 Qunkejiala; 22 Nahailie; 23 Jiayi; 24 Huangkebao; 25 Shangtamai; 26 Xiazhatan; 27 Heigu; 28 Watan; 29 Xiatang; 30 Tadong; 31 Shanabao; 32 Longqu; 33 Shanggamaoqibao; 34 Douhouzong; 35 Longbatan; 36 Dongciduo; 37 Duojiangtang; 38 Duoguotan; 39 Tawa; 40 Hangnaishaga; 41 Jialabei; 42 Fuxi; 43 Kaoxiaotu; 44 Hongxin; 45 Hacheng; 46 Nangucheng; 47 Beigucheng.
Fig.2  Remote sensing images of six selected ancient cities in Qinghai Province. (a) Fuxi; (b) Xiatang; (c) Hongxing; (d) Huangkebao; (e) Jialabei; (f) Sanjiao.
Fig.3  Sampling positions in ancient cities. (a) and (b): Cultural layers in the Langshetou and Sanjiaocheng ancient cities; (c) and (d): Dead wood and grass in the walls of the Niangmo and Hacheng ancient cities; (e) and (f): Sampling from the walls of the Ketu and Kaoxiaotu ancient cities.
Lab number Dating material Ancient
city
Location Dating method Sampling position Radiocarbon age (BP) Calibrated age
1s (68.2%) 2s (95.4%)
BA120344 Charcoal Gufang Qilian AMS Cultural layer inside the city 1085±40 898AD (23.3%) 925AD
944AD (44.9%) 995AD
880AD (95.4%) 1024AD
BA120345 Charcoal Langshetou Qilian AMS Cultural layer inside the city 1260±35 688AD (68.2%) 771AD 668AD (79.6%) 778AD
790AD (15.8%) 868AD
BA120346 Charcoal Langshetou Qilian AMS Cultural layer inside the city 1550±35 430AD (47.5%) 493AD
510AD (4.6%) 518AD
528AD (16.1%) 551AD
420AD (95.4%) 584AD
BA120347 Charcoal Biandugou Qilian AMS Inside rammed?earth?layer?of city wall 1370±35 638AD (68.2%) 676AD 601AD (92.6%) 694AD
746AD ( 2.8%) 763AD
BA120348 Charcoal Sanjiaocheng Qilian AMS Cultural layer inside the city 1090±60 892AD (68.2%) 1014AD 774AD (95.4%) 1030AD
BA120349 Grass Niangmo Jianzha AMS Inside rammed?earth?layer?of city wall 990±35 997AD (5.1%) 1006AD
1011AD (38.0%) 1046AD
1092AD (20.7%) 1120AD
1140AD ( 4.5%) 1147AD
986AD (53.0%) 1059AD
1065AD (42.4%) 1154AD
BA120350 Charcoal Baojia Minhe AMS Inside rammed?earth?layer?of city wall 1120±30 893AD (68.2%) 970AD 778AD (1.7%) 790AD
809AD (0.5%) 815AD
826AD (1.4%) 841AD
862AD (91.8%) 994AD
BA120351 Charcoal Baojia Minhe AMS Inside rammed?earth?layer?of city wall 955±35 1026AD (20.0%) 1050AD
1082AD(36.0%)1127AD
1135AD (12.3%) 1151AD
1020AD (95.4%) 1159AD
BA120352 Charcoal Shancheng Minhe AMS Inside rammed?earth?layer?of city wall 415±45 1434AD (57.2%) 1497AD
1507AD (2.0%) 1511AD
1601AD ( 9.1%) 1616AD
1420AD(71.0%)1525AD
1556AD(24.4%)1632AD
BA120354 Charcoal Guchengyuan Minhe AMS Inside rammed?earth?layer?of city wall 1235±30 694AD (34.7%) 746AD
763AD (10.4%) 778AD
791AD (7.6%) 805AD
814AD (5.0%) 825AD
841AD (10.5%) 862AD
686AD (95.4%) 880AD
BA120355 Twig Xiachuankou Minhe AMS Inside rammed?earth?layer?of city wall 1075±25 904AD (12.1%) 916AD
9665AD (50.6%) 998AD
1006AD ( 5.4%) 1012AD
898AD (19.4%) 924AD
946AD (76.0%) 1018AD
BA120358 Charcoal Heichengzi Minhe AMS Inside rammed?earth?layer?of city wall 960±35 1024AD (22.4%) 1050AD
1084AD (34.5%) 1125AD
1136AD (11.3%)1150AD
1018AD (95.4%) 1158AD
BA120359 Charcoal Beigu Minhe AMS Inside rammed?earth?layer?of city wall 1290±25 676AD (42.2%)713AD
744AD (26.0%) 765AD
665AD (95.4%) 770AD
BA120360 Charcoal Qihouang Hualong AMS Inside rammed?earth?layer?of city wall 1255±20 722AD (14.7%) 740AD
766AD (10.7%) 778AD
790AD (25.0%) 829AD
838AD (17.9%) 865AD
695AD (0.9%) 700AD
710AD (21.4%) 745AD
764AD (73.1%) 882AD
BA120361 Charcoal Hei Ledu AMS Inside rammed?earth?layer?of city wall 1145±25 780AD (3.4%) 787AD
876AD (23.5%) 906AD
915AD (41.3%) 968AD
776AD (6.1%) 792AD
802AD (11.8%) 848AD
854AD (77.5%) 974AD
BA120362 Charcoal Hei Ledu AMS Inside rammed?earth?layer?of city wall 1385±20 644AD (68.2%) 660AD 618AD (95.4%) 668AD
BA120363 Charcoal Heichengzi Ledu AMS Cultural layer inside the city 970±20 1022AD (35.7%) 1045AD
1095AD (27.9%) 1120AD
1142AD ( 4.6%) 1146AD
1018AD (41.9%) 1052AD
1081AD (53.5%)1152AD
BA120364 Charcoal Heichengzi Ledu AMS Cultural layer inside the city 1010±20 996AD (68.2%) 1029AD 986AD (95.4%) 1040AD
BA120365 Charcoal Yangjiacheng Datong AMS Inside rammed?earth?layer?of city wall 1220±25 728AD (6.7%) 737AD
768AD (8.6%) 778AD
790AD (52.9%) 867AD
696AD (0.8%) 700AD
710AD (16.1%) 745AD
764AD (78.5%) 886AD
BA120366 Charcoal Xinchengbao Huangzhong AMS Inside rammed?earth?layer?of city wall 1245±20 694AD (56.5%) 746AD
763AD (11.7%) 774AD
682AD (81.9%) 779AD
790AD (7.8%) 830AD
836AD ( 5.7%) 865AD
BA120367 Grass Duobaxin Huangzhong AMS Inside rammed?earth?layer?of city wall 95±20 1697AD (23.8%) 1725AD
1814AD (17.1%) 1835AD
1877AD (15.7%) 1896AD
1902AD (11.6%)1916AD
1690AD (26.5%) 1729AD
1810AD (68.9%)1922AD
BA120368 Charcoal Duobajiu Huangzhong AMS Inside rammed?earth?layer?of city wall 1860±25 90AD (6.5%) 100AD
123AD (42.1%) 180AD
186AD (19.6%) 214AD
82AD (95.4%) 226AD
BA120369 Charcoal Heichengbao Huangzhong AMS Inside rammed?earth?layer?of city wall 1035±20 993AD (68.2%) 1018AD 980AD (95.4%) 1025AD
BA120370 Charcoal Heichengbao Huangzhong AMS Inside rammed?earth?layer?of city wall 895±30 1048AD (29.9%) 1086AD
1123AD (9.2%) 1138AD
1149AD (29.0%)1189AD
1039AD (95.4%) 1215AD
BA120371 Charcoal Sanjiao Huangyuan AMS Inside rammed?earth?layer?of city wall 1205±40 770AD (68.2%) 882AD 688AD (92.4%) 898AD
924AD ( 3.0%) 944AD
BA120372 Charcoal Qunkejiala Gonghe AMS Inside rammed?earth?layer?of city wall 880±20 1154AD (68.2%) 1210AD 1048AD (18.5%) 1084AD
1124AD (3.3%) 1136AD
1150AD (73.6%)1218AD
BA120373 Charcoal Nahailie Gonghe AMS Cultural layer inside the city 890±30 1050AD (23.7%) 1083AD
1126AD (5.3%) 1136AD
1150AD (39.2%)1206AD
1040AD (92.4%) 1108AD
1116AD ( 3.0%) 1218AD
BA120374 Charcoal Jiayi Gonghe AMS Cultural layer inside the city 1035±25 990AD (68.2%) 1020AD 970AD (95.4%) 1030AD
BA120375 Charcoal Huangkebao Gonghe AMS Cultural layer inside the city 1080±20 901AD (20.0%) 920AD
960AD (48.2%) 994AD
897AD (24.5%) 925AD
943AD (70.9%) 1016AD
BA120376 Charcoal Shangtamai Gonghe AMS Inside rammed?earth?layer?of city wall 305±20 1522AD (48.9%)1575AD
1585AD (3.1%) 1590AD
1625AD (16.2%)1644AD
1492AD (72.0%) 1602AD
1615AD (23.4%)1649AD
BA120377 Charcoal Xiazhatan Gonghe AMS Cultural layer inside the city 275±25 1526AD (29.5%) 1554AD
1632AD (38.7%)1658AD
1520AD (46.0%) 1592AD
1619AD (47.5%) 1665AD
1784AD ( 1.9%) 1794AD
BA120378 Charcoal Heigu Guide AMS Inside rammed?earth?layer?of city wall 295±25 1522AD (49.0%) 1572AD
1630AD (19.2%)1648AD
1496AD (1.9%) 1506AD
1512AD (65.3%) 1601AD
1616AD (28.2%)1654AD
BA120379 Charcoal Watan Xinghai AMS Inside rammed?earth?layer?of city wall 1140±25 882AD (21.2%) 906AD
915AD (47.0%) 968AD
777AD (4.4%) 791AD
804AD (7.6%) 843AD
859AD (83.5%) 979AD
BA120380 Charcoal Xiatang Xinghai AMS Inside rammed?earth?layer?of city wall 1915±20 66AD (36.3%) 90AD
99AD (31.9%) 124AD
30AD ( 1.5%) 37AD
51AD (93.9%) 130AD
BA120381 Charcoal Tadong Xinghai AMS Cultural layer inside the city 595±25 1312AD (54.2%) 1358AD
1388AD (14.0%) 1400AD
1298AD (70.8%) 1370AD
1380AD (24.6%)1410AD
BA120382 Charcoal Shanabao Xinghai AMS Cultural layer inside the city 1055±20 986AD(68.2%) 1016AD 904AD(3.3%)916AD
967AD (92.1%) 1023AD
BA120383 Charcoal Longqu Xinghai AMS Cultural layer inside the city 670±25 1282AD (40.3%) 1302AD
1366AD (27.9%) 1382AD
1276AD (54.3%) 1316AD
1355AD (41.1%) 1390AD
BA120384 Charcoal Longqu Xinghai AMS Cultural layer inside the city 415±20 1443AD (68.2%) 1467AD 1436AD (93.4%) 1490AD
1602AD ( 2.0%) 1609AD
BA120385 Charcoal Shanggamaoqibao Tongde AMS Cultural layer inside the city 1035±25 990AD (68.2%) 1020AD 970AD (95.4%) 1030AD
BA120386 Charcoal Douhouzong Tongde AMS Inside rammed?earth?layer?of city wall 2030±25 54BC (66.4%) 6AD
12AD ( 1.8%) 16AD
110BC (93.1%) 30AD
36AD ( 2.3%) 50AD
BA120387 Charcoal Douhouzong Tongde AMS Inside rammed?earth?layer?of city wall 1055±20 986AD (68.2%) 1016AD 904AD (3.3%) 916AD
967AD (92.1%) 1023AD
BA120388 Charcoal Longbatan Tongde AMS Cultural layer inside the city 1055±20 986AD (68.2%) 1016AD 904AD (3.3%) 916AD
967AD (92.1%) 1023AD
BA120389 Charcoal Dongciduo Guinan AMS Cultural layer inside the city 1000±20 998AD (5.4%) 1004AD
1012AD (62.8%)1035AD
988AD (87.8%) 1045AD
1096AD (6.8%) 1120AD
1142AD ( 0.7%) 1146AD
BA120390 Charcoal Duojiangtang Guinan AMS Cultural layer inside the city 1030±25 994AD (68.2%) 1020AD 972AD (95.4%) 1032AD
BA120391 Charcoal Duoguotan Guinan AMS Cultural layer inside the city 985±25 1016AD (44.3%)1045AD
1095AD (20.6%) 1120AD
1142AD ( 3.3%) 1146AD
994AD (56.3%) 1051AD
1082AD (39.1%) 1152AD
BA120392 Charcoal Tawa Guinan AMS Inside rammed?earth?layer?of city wall 2365±25 474BC (17.6%) 444BC
431BC (50.6%) 394BC
512BC (95.4%) 390BC
BA120394 Charcoal Hangnaishaga Guinan AMS Cultural layer inside the city 1095±25 900AD (25.6%) 921AD
950AD (42.6%) 986AD
890AD (94.2%) 997AD
1006AD ( 1.2%) 1012AD
BA120206 Charcoal Jialabei Gonghe AMS Cultural layer inside the city 1140±25 882AD (21.2%) 906AD
915AD (47.0%) 968AD
777AD (4.4%) 791AD
804AD (7.6%) 843AD
859AD (83.5%) 979AD
BA120207 Charred
sheep dropping
Fuxi Gonghe AMS Cultural layer inside the city 370±25 1458AD (49.6%) 1516AD
1596AD (18.6%) 1618AD
1450AD (49.6%) 1524AD
1558AD (18.6%) 1632AD
BA120208 Tree bark Kaoxiaotu Dulan AMS Inside rammed?earth?layer?of city wall 1285±25 680AD (40.5) 715AD
744AD (27.7%) 766AD
668AD (95.4%) 770AD
BA120209 Charcoal Hongxin Dulan AMS Cultural layer inside the city 1885±25 74AD (68.2%) 134AD 65AD (95.4%) 214AD
BA120210 Grass Hacheng Huangyuan AMS Inside rammed?earth?layer?of city wall 355±35 1470AD (33.4%) 1522AD
1572AD (34.8%) 1630AD
1453AD (44.0%) 1530AD
1538AD (51.4%) 1635AD
BA120211 Charcoal Nangucheng Huangyuan AMS Inside rammed?earth?layer?of city wall 1115±35 893AD (68.2%) 975AD 778AD (2.0%) 790AD
826AD (1.6%) 840AD
863AD (91.8%) 1015AD
BA120212 Charcoal Beigucheng Huangyuan AMS Inside rammed?earth?layer?of city wall 1040±40 970AD (68.2%) 1028AD 892AD (93.5%) 1044AD
1102AD ( 1.9%) 1118AD
Tab.1  Calibrated radiocarbon data from the investigated ancient cities in Qinghai Province
Fig.4  Comparison between paleoclimate records, population fluctuation, and dates of ancient cities in northeast Tibetan Plateau: a. 50-year mean temperature in Northeast Tibetan plateau (Yang et al., 2003); b. Temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings (Zhang et al., 2003); c. The 2326- year ring-width chronology of Sabina przewalskii Kom (Liu et al., 2009); d. Precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains (Zhang et al., 2011); e. War numbers during historic periods in east Qinghai Province (Compilation of Chinese Military History, 2002; Gu, 2005); f. Historical population in Qinghai Province (Zhao and Xie, 1998); g. Summed probability distributions of 54 radiocarbon dates from 47 ancient cities in east Qinghai Province. SA?Spring and Autumn Period; WS?War States Period; WJNS?Wei Jin Southern and Northern Dynasties period; FDTK?Five Dynasties and Ten Kingdoms period. Black shadows show relatively cold and dry periods during historical times.
1 Aldenderfer M (2011). Peopling the Tibetan plateau: insights from archaeology. High Alt Med Biol, 12(2): 141–147
https://doi.org/10.1089/ham.2010.1094
2 Bamforth D B, Grund B (2012). Radiocarbon Calibration curves, summed probability distributions, and early paleoindian population trends in North America. J Archaeol Sci, 39(6): 1768–1774
https://doi.org/10.1016/j.jas.2012.01.017
3 Barton L, Brantingham P J, Ji D (2007). Late Pleistocene climate change and Paleolithic cultural evolution in northern China: Implications from the Last Glacial Maximum. Late Quaternary Climate Change and Human Adaptation in Arid China, 9: 105–128 (in Chinese)
https://doi.org/10.1016/S1571-0866(07)09009-4
4 Brantingham P J, Gao X (2006). Peopling of the northern Tibetan Plateau. World Archaeol, 38(3): 387–414
https://doi.org/10.1080/00438240600813301
5 Brantingham P J, Gao X, Madsen D B, Rhode D, Perreault C, Woerd J V D, Olsen J W (2013). Late Occupation of the High-Elevation Northern Tibetan Plateau Based on Cosmogenic, Luminescence, and Radiocarbon Ages. Geoarchaeology-an International Journal, 28(5): 413–431
https://doi.org/10.1002/gea.21448
6 Bureau of National Cultural Relics (1996). Atlas of Chinese Cultural Relics-Fascicule of Qinghai Province.Beijing: China Cartograghic Publishing House Press (in Chinese)
7 Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347(6219): 248–250
https://doi.org/10.1126/science.1259172
8 Compilation of Chinese Military History (2002). War Chronology of Chinese Imperial (part1, part2).Beijing: The people’s liberation army press (in Chinese)
9 Cui Y H, Zhang D Z, Du C S (1999). The History of Qinghai Province.Xining: Qinghai People Press (in Chinese)
10 d’Alpoim Guedes J A, Lu H L, Hein A M, Schmidt A H (2015). Early evidence for the use of wheat and barley as staple crops on the margins of the Tibetan Plateau. Proc Natl Acad Sci USA, 112(18): 5625–5630
https://doi.org/10.1073/pnas.1423708112
11 Dong G H, Jia X, Elston R, Chen F H, Li S C, Wang L, Cai L H, An C B (2013). Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China. J Archaeol Sci, 40(5): 2538–2546
https://doi.org/10.1016/j.jas.2012.10.002
12 Dong G H, Wang Z L, Ren L L, Matuzeviciute G M, Wang H, Ren X Y, Chen F H (2014). A comparative study of 14C dating on charcoal and charred seeds from Late Neolithic and Bronze Age sites in Gansu and Qinghai Provinces, NW China. Radiocarbon, 56(1): 157–163
https://doi.org/10.2458/56.16507
13 Dong G H, Yang Y, Zhao Y, Zhou A F, Zhang X J, Li X B, Chen F H (2012). Human settlement and human-environment interactions during the historical period in Zhuanglang County, western Loess Plateau, China. Quat Int, 281: 78–83
https://doi.org/10.1016/j.quaint.2012.05.006
14 Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M (2005). The archaeologiCal and genetic foundations of the European population during the Late Glacial: implications for ‘Agricultural Thinking’. Camb Archaeol J, 15(2): 193–223
https://doi.org/10.1017/S0959774305000107
15 Gao C, Lei J, Jin F J (2013). The classification and assessment of vulnerability of man-land system of oasis city in arid area. Frontiers of Earth Science, 7(4): 406–416
https://doi.org/10.1007/s11707-013-0402-y
16 Gavin D G (2001). Estimation of inbuilt age in radiocarbon ages of soil charcoal for firehistory studies. Radiocarbon, 43(1): 27–44
17 Gu Z Y (2005). Dushifangyujiya.Beijing: Zhonghuashuju Press (in Chinese)
18 Hu N K, Li X (2014). Spatial distribution of an ancient agricultural oasis in Juyan, northwestern China. Frontiers of Earth Science, 8(3): 338–350
https://doi.org/10.1007/s11707-014-0452-9
19 Hudson A M, Olsen J W, Quade J (2014). Radiocarbon Dating of Interdune Paleo-Wetland Deposits to Constrain the Age of Mid-to-Late Holocene Microlithic Artifacts from the Zhongba site, Southwestern Qinghai-Tibet Plateau. Geoarchaeology-an International Journal, 29(1): 33–46
https://doi.org/10.1002/gea.21459
20 Kennett D J, Breitenbach S F, Aquino V V, Asmerom Y, Awe J, Baldini J U, Bartlein P, Culleton B J, Ebert C, Jazwa C, Macri M J, Marwan N, Polyak V, Prufer K M, Ridley H E, Sodemann H, Winterhalder B, Haug G H (2012). Development and disintegration of Maya political systems in response to climate change. Science, 338(6108): 788–791
https://doi.org/10.1126/science.1226299
21 Li Z X (1995). The examination of ancient cities in Qinghai Province, China.Xi’an: Northwestern University Press (in Chinese)
22 Liu Y, An Z S, Linderholm H W, Chen D L, Song H M, Cai Q F, Sun J Y, Tian H (2009). Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Earth Sci, 52(3): 348–359
https://doi.org/10.1007/s11430-009-0025-z
23 LuH Y, Xia X C, Liu J Q, Qin X G, Wang F B, Yidilisi A, Zhou L P, Mu G J, Jiao Y X, Li J Z (2010). A preliminary study of chronology for a newly discovered ancient city and five archaeological sites in Lop Nor, China. Chin Sci Bull, 55(1): 63–71
https://doi.org/10.1007/s11434-009-0586-4
24 McFadgen B G (1982). Dating New Zealand archaeology by radiocarbon. N Z J Sci, 25: 379–392
25 Reimer P J, Bard E, Beck J W, Baillie M G L, Blackwell P G, Bronk Ramsey C, Buck C E, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Haflidason H, Hajdas I, Hatte C, Heaton T J, Hoffman D L, Hogg A G, Hughen K A, Kaiser K F, Kromer B, Manning S W, Niu M, Reimer R W, Richards D A, Scott E M, Southon J R, Staff R A, Turney C S M, van der Plicht J (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0‒50,000 years cal BP. Radiocarbon, 55(4): 1869–1887
https://doi.org/10.2458/azu_js_rc.55.16947
26 Rhode D, Brantingham P J, Perreault C, Madsen D B (2014). Mind the gaps: testing for hiatuses in regional radiocarbon date sequences. J Archaeol Sci, 52: 567–577
https://doi.org/10.1016/j.jas.2014.02.022
27 Schiffer M B (1986). Radiocarbon dating and the “Old Wood” problem: the case of the Hohokam chronology. J Archaeol Sci, 13(1): 13–30
https://doi.org/10.1016/0305-4403(86)90024-5
28 Shennan S, Edinborough K (2007). Prehistoric population history: from the Late Glacial to the Late Neolithic in central and northern Europe. J Archaeol Sci, 34(8): 1339–1345
https://doi.org/10.1016/j.jas.2006.10.031
29 Stuiver M, Reimer P J (1993). Extended 14C data base and revised CALIB 3.0 14C age Calibration program. Radiocarbon, 35(1): 215–230
30 Sun Y J, Lai Z P, Long H, Liu X J, Fan Q S (2010). Quartz OSL dating of archaeological sites in Xiao Qaidam Lake of the NE Qinghai-Tibetan Plateau and its implications for palaeoenvironmental changes. Quat Geochronol, 5(2-3): 360–364
https://doi.org/10.1016/j.quageo.2009.02.013
31 Williams A N (2012). The use of summed radiocarbon probability distributions in archaeology: a review of methods. J Archaeol Sci, 39(3): 578–589
https://doi.org/10.1016/j.jas.2011.07.014
32 Xie Y W, Chen F H, Qi J G (2009). Past desertification processes of Minqin Oasis in arid China. Int J Sustain Dev World Ecol, 16(6): 417–426
https://doi.org/10.1080/13504500903268780
33 Yancheva G, Nowaczyk N R, Mingram J, Dulski P, Schettler G, Negendank J F W, Liu J Q, Sigman D M, Peterson L C, Haug G H (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(74‒77): 76–77
https://doi.org/10.1038/nature05431
34 Yang B, Braeuning A, Shi Y F (2003). Late Holocene temperature fluctuations on the Tibetan Plateau. Quat Sci Rev, 22(21‒22): 2335–2344
https://doi.org/10.1016/S0277-3791(03)00132-X
35 Zhang D D, Pei Q, Lee H F, Zhang J, Chang C Q, Li B S, Li J B, Zhang X Y (2015). The pulse of imperial China: a quantitative analysis of long-term geopolitical and climate cycles. Glob Ecol Biogeogr, 24(1): 87–96
https://doi.org/10.1111/geb.12247
36 Zhang P Z, Cheng H, Edwards R L, Chen F H, Wang Y J, Yang X L, Liu J, Tan M, Wang X F, Liu J H, An C L, Dai Z B, Zhou J, Zhang D Z, Ji J H, Johnson K R (2008). A Test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322(5903): 940–942
https://doi.org/10.1126/science.1163965
37 Zhang Q B, Chen G D, Yao T D, Kang X C, Huang J G (2003). A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophys Res Lett, 30(14): 1739–1742
https://doi.org/10.1029/2003GL017425
38 Zhang Y, Tian Q H, Gou X H, Chen F H, Leavitt S W, Wang Y S (2011). Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China. Int J Climatol, 31(3): 371–381
https://doi.org/10.1002/joc.2085
39 Zhang Z B, Tian H D, Cazelles B, Kausrud K L, Brauning A, Guo F, Stenseth N C (2010). Periodic climate cooling enhanced natural disasters and wars in China during AD 10‒1900. Proceedings of the Royal Society, 277(1701): 3745–3753
https://doi.org/10.1098/rspb.2010.0890
40 Zhao M, Kong Q P, Wang H W, Peng M S, Xie X D, Wang W Z, Jia Y, Duan J G, Cai M C, ZhaoS N, Cidanpingcuo , Tu Y Q, Wu S F, Yao YG, Bandelt H J, Zhang Y P (2009). Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proc Natl Acad Sci USA, 106(50): 21230–21235
https://doi.org/10.1073/pnas.0907844106
41 Zhao S C (1986). Ancient cultures in Qinghai Province, China.Xining: Qinghai People’s Press (in Chinese)
42 Zhao W L, Xie S J (1998). The History of Human Population in China.Beijing: People’s Press (in Chinese)
[1] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[2] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[3] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[4] Xiba TANG, Fan PING, Shuai YANG, Mengxia LI, Jing PENG. On the rapid intensification for Typhoon Meranti (2016): convection, warm core, and heating budget[J]. Front. Earth Sci., 2019, 13(4): 791-807.
[5] Qiao LIU, Weican ZHOU, Melinda PENG, Tim LI. Factors controlling northward and north-eastward moving tropical cyclones near the coast of East Asia[J]. Front. Earth Sci., 2019, 13(4): 778-790.
[6] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[7] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[8] Xiaoping LIU, Shuli CHEN, Li ZHUO, Jun LI, Kangning HUANG. Multi-sensor image registration by combining local self-similarity matching and mutual information[J]. Front. Earth Sci., 2018, 12(4): 779-790.
[9] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[10] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[11] Xin JIA,Shuangwen YI,Yonggang SUN,Shuangye WU,Harry F. LEE,Lin WANG,Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[12] Dengpan XIAO,Yongqing QI,Zhiqiang LI,Rende WANG,Juana P. MOIWO,Fengshan LIU. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China[J]. Front. Earth Sci., 2017, 11(1): 148-155.
[13] Le Wang,Shenglian Guo,Xingjun Hong,Dedi Liu,Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[14] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
[15] Liwen GONG,Ni LI,Qicheng FAN,Yongwei ZHAO,Liuyi ZHANG,Chuanjie ZHANG. Mapping the topography and cone morphology of the Dalinor volcanic swarm in Inner Mongolia with remote sensing and DEM Data[J]. Front. Earth Sci., 2016, 10(3): 578-594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed