Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (2) : 268-275    https://doi.org/10.1007/s11707-014-0475-2
RESEARCH ARTICLE
Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China
Djakanibé Désiré TRAORÉ1,Yansheng GU1,2,*(),Humei LIU1,2,Ceven SHEMSANGA1,Jiwen GE2,*
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
2. Hubei Key Laboratory of Wetland Evolution & Eco-Restoration (WEER), China University of Geosciences, Wuhan 430074, China
 Download: PDF(849 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This research describes modern phytolith records and distributions from subalpine surface soils in the Dalaoling Forest Reserve, and reveals its implications for local climate conditions with respect to the altitude gradient. Well-preserved phytolith morpho-types, assemblages, and climatic indices were used to study the relationship between local vegetation and climate conditions. The phytolith classification system is mainly based on the characteristics of detailed morpho-types described for anatomical terms, which are divided into seven groups: long cells, short cells, bulliform cells, hair cells, pteridophyte type, broad-leaved type, and gymnosperm type. Phytoliths originating from the Poaceae are composed of Pooideae (rondel and trapeziform), Panicoideae (bilobate, cross, and polylobate), Chloridoideae (short/square saddle), and Bambusoideae (oblong concave saddle). Based on the altitudinal distribution of the phytolith assemblages and the indices of aridity (Iph), climate (Ic), and tree cover density (D/P), five phytolith assemblage zones have revealed the five types of climatic conditions ranging from 1,169 m to 2,005 m in turn: warm-wet, warm-xeric to warm-mesic, warm- xeric to cool-mesic, cool-xeric, and cool-mesic to cool-xeric. The Bambusoideae, Panicoideae, and Chloridoideae are the dominant vegetation at the lower-middle of the mountains, while Pooideae is mainly distributed in the higher mountains. The close relationship between phytolith assembleages and changes of altitude gradient suggest that vegetation distribution patterns and plant ecology in the Dalaoling mountains are controlled by temperature and humidity conditions. Our results highlight the importance of phytolith records as reliable ecoclimatic indicators for vegetation ecology in subtropical regions.

Keywords central China      subalpine surface soil      phytolith records      vegetation      and climate change     
Corresponding Author(s): Yansheng GU,Jiwen GE   
Online First Date: 14 November 2014    Issue Date: 30 April 2015
 Cite this article:   
Yansheng GU,Humei LIU,Ceven SHEMSANGA, et al. Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China[J]. Front. Earth Sci., 2015, 9(2): 268-275.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0475-2
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I2/268
Fig.1  (a)Map showing the location of the Dalaoling Forest Reserve in China, and (b) showing the sampling sites along altitude gradient
Samples Elevation/m Zonal vegetation Dominant plant species Soil type
DLL-1 2,005 Deciduous broad-leaved and coniferous mixed forest Acer davidii, Acer oliverianum, Aralia chinensis, Buddleja lindleyana, Cirsium chrysolepis, Cornus controversa, Corylopsis sinensis, Corylus chinensis, Corylus ferox var. thibetica, Corylus heterophylla var. sutchuanensis, Daucus carota, Eleutherococcus senticosus, Elsholtzia splendens, Euonymus phellomana, Exochorda racemosa, Galium bungei, Helwingia japonica, Hydrangea anomala, Parasenecio forrestii, Quercus spinosa, Spiraea chinensis, Viburnum sympodiale Mountain brown soil
DLL-2 1,919 As the above
DLL-3 1,791 As the above
DLL-4 1,739 As the above
DLL-5 1,729 Berberis julianae, Bletilla striata, Castanea henryi, Fagus engleriana, Fagus pashanica, Indocalamus tessellatus,Liriodendron chinensis, Quercus aliena var. acuteserrata, Quercus spinosa, Quercus engleriana, Serissa serissoides, Symplocos paniculata
DLL-6 1,721 As the above
DLL-7 1,680 Evergreen and deciduous broad-leaved forest Aletrts spicata, Aralia chinensis, Corylopsis sinensis var. sinensis, Euphorbia pekinensis, Indocalamus tesseltatus, Litsea pungens Hemsl, Litsea shangensis,Pinus armandi
DLL-8 1,626 As the above Mountain yellow-brown soil
DLL-9 1,559 Fagus lucida, Fagus longipetiolata, Fagus engleriana, Symplocos paniculata, Hydrangea macrophylla, Rhododendron fortunei, Kerria japonica, Pilea notata, Dryopteris panda, Arthraxon hispidus
DLL-10 1,494 Acer davidii, Acer flabellatum, Carpinus turczaninowii, Castanea henryi, Castanea seguinii, Cerasus conradinae, Cornus kousa subsp. chinensis, Elaeagnus umbellate, Fagus engleriana, Hamamelis mollis, Lindera obtusiloba, Litsea pungens, Pinus armandii, Serissa serissoides, Symplocos paniculata, Viburnum punctatum
DLL-11 1,423 Cercidiphyllum japonicum, Davidia involucrate, Davidia involucrate var. vilmoriniana, Dipteronia sinensis, Euptelea pleiosperma, Kolkwitzia amabilis, Kalopanax septemlobus, Pterostyrax psilophyllus, Stewartia sinensis
DLL-12 1,374 As the above
DLL-13 1,371 As the above
DLL-14 1,336 Actinidia chinensis, Albizia julibrissin, Aralia chinensis, Arisaema erubescens, Arthraxon hispidus, Betula luminifera, Bletilla striata, Carya cathayensis, Castanea seguinii, Cornus kousa subsp. chinensis, Cunninghamia lanceolata, Duchesnea indica, Erigeron annuus, Euscaphis japonica, Glochidion puberum, Lonicera japonica, Osmunda japonica, Parathelypteris glanduligera, Platycarya strobilacea, Polygonum perfoliatum, Polypogon fugax, Pueraria montana, Quercus serrata, Quercus serrata var. brevipetiolata, Ranunculus sieboldii, Rhus chinensis, Rubus corchorifolius, Smilax china, Spiraea salicifolia, Stellaria media
DLL-15 1,314 As the above
DLL-16 1,272 As the above
DLL-17 1,239 As the above
DLL-18 1,169 As the above Mountain yellow soil
Tab.1  18 surface soil samples and related vegetation, dominant plant species, and soil types
Fig.2  Major phytolith morphotypes from surface soils in the subalpine Dalaoling Forest Reserve (scale bar is 20 μm). (1?2) bilobates; (3?5) crosses; (6?7) cylindrical polylobates; (8?13) rondels; (14) trapeziform polylobate (Pooideae type); (15) trapeziform sinuate (Pooideae type); (16?17) oblong concave saddles; (18?19) square saddles; (20?21) elongate smooth; (22) elongate echinate); (23) parallelepipedal bulliform cells; (24?26) cuneiform bulliform cells; (27?28) unciform hair cell (grass type); (29) parallelepipedal contorted (gymnosperm type); (30?31) tri-stellate truncate (gymnosperm type); (32?33) vascular tissue; (34?35) tri-stellate truncate (broad-leaved tree type); (36?37) polyhedrons with conical projection (Cyperaceae, Cyperus sp.) (Piperno, 1989; Gu et al., 2008); (38) globular smooth; (39?40) globular echinate; (41) globular granulate; (42) platelet polygon (broad-leaved tree type); (43): opaque perforated platelet (Asteraceae)
Fig.3  Distribution of phytolith assemblages and indices for vegetation and climate change with elevation change.

Climatic index Ic, is a ratio of Pooideae to total Pooideae, Panicoideae, and Chloridoideae phytoliths; Aridity index, Iph, is a ratio of Chloridoideae to total Chloridoideae and Panicoideae phytoliths; Tree cover density index, D/P, is the ratio of ligneous dicotyledons phytoliths against Poaceae phytoliths.

EDBF = Evergreen and deciduous broad-leaved forest; DBCMF = Deciduous broad-leaved and coniferous mixed forest; MYS = Mountain yellow soil; MYBS = Mountain yellow-brown soil; MBS = Mountain brown soil

1 Alexandre A, Meunier J D, Lezine A M, Vincens A, Schwartz D (1997). Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol, 136(1-4): 213-229
https://doi.org/10.1016/S0031-0182(97)00089-8
2 Barboni D, Bonnefile R, Meunier J D, Alexandre A (1999). Phytoliths as Palaeoenvironmental indicator, west side middle awash valley, Ethiopia. Palaeogeography, Paleoclimatology, paleoecology, 152: 87-100
3 Brown D A (1984). Prospects and limits of a phytolith key for grasses in the central United States. J Archaeol Sci, 11(4): 345-368
https://doi.org/10.1016/0305-4403(84)90016-5
4 Diester-Haass L, Schrader H J, Thiede J (1973). Sedimentological and palaeoclimatological investigations of two pelagic-ooze cores off Cape Barbas, North-West Africa. Meteor Forschungsergebnisse, 16: 19-66
5 Fredlund G, Tieszen L T (1994). Modern phytolith assemblages from the North American Great Plains. J Biogeogr, 21(3): 321-335
https://doi.org/10.2307/2845533
6 Fredlund G G, Tieszen L T (1997). Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeogr Palaeoclimatol Palaeoecol, 136(1-4): 199-211
https://doi.org/10.1016/S0031-0182(97)00040-0
7 Gu Y S, Huang X Y, Zhang W G, Hong H L, Li Y T (2013). Red palaeosols development in response to the enhanced East Asia summer monsoon since the mid-pleistocene in South China: evidence derived from magnetic properties and molecular fossil records. Journal of Earth Science, 24(3): 382-396
https://doi.org/10.1007/s12583-013-0331-4
8 Gu Y S, Pearsall D M, Xie S C, Yu J X (2008). Vegetation and fire history of a Chinese site in southern tropical Xishuangbanna derived from Phytolith and charcoal records from Holocene sediments. J Biogeogr, 35: 325-341
9 Gu Y S, Wang H L, Huang X Y, Peng H X, Huang J H (2012). Phytolith records of the climate change since the past 15000 years in the middle reach of the Yangtze River in China. Front Earth Sci, 6(1): 10-17
https://doi.org/10.1007/s11707-012-0302-6
10 Gu Y S, Yu J X, Xie S C, Huang J H (2007). Palaeoclimate changes derived from the records of core sediments spore-pollen and phytolith in the Jianghan Plain over the past 5000 years. Earth Science-Journal of China University, 32: 133-140 (in Chinese)
11 Hong H L, Gu Y S, Li R B, Zhang K X, Li Z H (2010). Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section,southern China. J Quaternary Sci, 25(5): 662-674
https://doi.org/10.1002/jqs.1340
12 Hong H L, Gu Y S, Yin K, Wang C, Li Z (2013). Clay record of climate change since the mid-Pleistocene in Jiujiang, south China. Boreas, 42(1): 173-183
https://doi.org/10.1111/j.1502-3885.2012.00276.x
13 ICPN Working Group: Madella M, Alexandre A, Ball T (2005). International code for phytolith nomenclature 1.0. Ann Bot (Lond), 96(2): 253-260
https://doi.org/10.1093/aob/mci172 pmid: 15944178
14 Lu H Y, Liu K B (2003). Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar Coast Shelf Sci, 58(3): 587-600
https://doi.org/10.1016/S0272-7714(03)00137-9
15 Lu H Y, Wu N Q, Yang X D, Jiang H, Liu K B, Liu T S (2006). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions. Quat Sci Rev, 25(9-10): 945-959
https://doi.org/10.1016/j.quascirev.2005.07.014
16 Mulholland S C (1989). Phytolith shape frequencies in North Dakota grasses: a comparison to general patterns. J Archaeol Sci, 16(5): 489-511
https://doi.org/10.1016/0305-4403(89)90070-8
17 Parker A G, Eckersley L, Smith M M, Goudie A S, Stokes S, Ward S, White K, Hodson M J (2004). Holocene vegetation dynamics in the northeastern Rub’al-Khali desert, Arabian peninsula: a phytolith, pollen and carbon isotope study. J Quaternary Sci, 19(7): 665-676
https://doi.org/10.1002/jqs.880
18 Piperno D R (1988). Phytolith Analysis: An Archaeological and Geological Perspective. San Diego: Academic Press15-80, 223-246
19 Piperno D R (1989). The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany, and systematics. Rev Palaeobot Palynol, 61(1-2): 147-173
https://doi.org/10.1016/0034-6667(89)90067-5
20 Piperno D R (2006). Phytoliths: A Comprehensive Guide to Archaeologists and Palaeoecologists. Maryland: Altamira Press23-44, 165-186
21 Piperno D R, Becker P (1996). Vegetational history of a site in the central Amazon basin derived from phytolith and charcoal records from natural soils. Quat Res, 45(2): 202-209
https://doi.org/10.1006/qres.1996.0020
22 Piperno D R, Pearsall D M (1998). The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematic and fossil phytolith identification. Smithsonian Contributions to Botany, 85(85): 1-40
https://doi.org/10.5479/si.0081024X.85
23 Shen Z H, Jin Y X, Wu J Q, Zhao Z E, Huang H D (2000). A study on the quantitative classification of forest communities of Dalaoling region at the Three Gorges. Journal of Wuhan Botany Research, 18: 99-108 (in Chinese with English abstract)
24 Shen Z H, Zhang X S (2000). The Spatial Pattern and Topographic Interpretation of the Forest Vegetation at Dalaoling Region in the Three Gorges. Acta Bot Sin, 2: 1089-1095 (in Chinese with English abstract)
25 Shen Z H, Zhang X S, Jin Y X (2001). A vertical gradient analysis of the flora of Dalaoling Mountain in the Three Gorges region, China. Acta Phytotaxonomica Sinica, 39: 260-268
26 Twiss P C (1987). Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. In: Johnson W C, ed. Quaternary Environments of Kansas. Kansas geological survey guidebook, series 5: 179-188
27 Twiss P C (1992). Predicted world distribution of C3 and C4 grass phytoliths. Phytolith Systematics: Emerging Issues. In: Rapp G Jr, Mulholland S C, eds. New York and London: Plenum Press, 13-128
28 Twiss P C, Suess E, Smith R M (1969). Morphological classification of grass phytoliths. Soil Science Society of America, Proceedings, 33(1): 109-115
https://doi.org/10.2136/sssaj1969.03615995003300010030x
29 Wang Y J, Lu H Y (1993). Phytolith Study and Its Application. China Ocean Press, Beijing (in Chinese).
30 Wu J Q, Zheng Z, Jin Y X (1996). Studies on the flora of seed plants in Dalaoling. Journal of Wuhan Botanical Research, 14: 309-317 (in Chinese)
[1] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[2] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[3] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[4] Shahla TASHAKKOR, Atefeh CHAMANI, Mozhgan Ahmadi NADOUSHAN, Minoo MOSHTAGHIE. Acoustics in urban parks: Does the structure of narrow urban parks matter in designing a calmer urban landscape?[J]. Front. Earth Sci., 2020, 14(3): 512-521.
[5] Weihe REN, Yan ZHAO, Quan LI, Jianhui CHEN. Changes in vegetation and moisture in the northern Tianshan of China over the past 450 years[J]. Front. Earth Sci., 2020, 14(2): 479-491.
[6] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[7] Yi HE, Haowen YAN, Lei MA, Lifeng ZHANG, Lisha QIU, Shuwen YANG. Spatiotemporal dynamics of the vegetation in Ningxia, China using MODIS imagery[J]. Front. Earth Sci., 2020, 14(1): 221-235.
[8] Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta[J]. Front. Earth Sci., 2018, 12(2): 444-456.
[9] Zhengjia LIU,Mei HUANG. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Front. Earth Sci., 2016, 10(4): 784-793.
[10] Peng LI,Luguang JIANG,Zhiming FENG,Sage SHELDON,Xiangming XIAO. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China[J]. Front. Earth Sci., 2016, 10(2): 303-314.
[11] Yanyun ZHAO,Xiangming HU,Jingtao LIU,Zhaohua LU,Jiangbao XIA,Jiayi TIAN,Junsheng MA. Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta[J]. Front. Earth Sci., 2015, 9(3): 567-577.
[12] Fengshan LIU,Fulu TAO,Shenggong LI,Shuai ZHANG,Dengpan XIAO,Meng WANG. Energy partitioning and environmental influence factors in different vegetation types in the GEWEX Asian Monsoon Experiment[J]. Front. Earth Sci., 2014, 8(4): 582-594.
[13] Jianjun CAO,Zhujun GU,Jianhua XU,Yushan DUAN,Yongmei LIU,Yongjuan LIU,Dongliang LI. Sensitivity analysis for leaf area index (LAI) estimation from CHRIS/PROBA data[J]. Front. Earth Sci., 2014, 8(3): 405-413.
[14] Jinpeng LI, Shikui DONG, Mingchun PENG, Xiaoyan LI, Shiliang LIU. Vegetation distribution pattern in the dam areas along middle-low reach of Lancang-Mekong River in Yunnan Province, China[J]. Front Earth Sci, 2012, 6(3): 283-290.
[15] Svetlana M. KOCHUBEY, Taras A. KAZANTSEV. Derivative vegetation indices as a new approach in remote sensing of vegetation[J]. Front Earth Sci, 2012, 6(2): 188-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed