Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (2) : 479-491    https://doi.org/10.1007/s11707-019-0788-2
RESEARCH ARTICLE
Changes in vegetation and moisture in the northern Tianshan of China over the past 450 years
Weihe REN1,2, Yan ZHAO1,2, Quan LI1(), Jianhui CHEN3
1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of West China’s Environmental System (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
 Download: PDF(2261 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Knowledge of historical changes in moisture within semi-arid and arid regions is the basis of climatic change predictions and strategies in response to long-term drought. In this study, a multiproxy peat record with high-resolution from Sichanghu in the northern Tianshan was used to document the changes in vegetation and climate over the past 450 years in the arid Central Asia. The pollen, grain size, and loss on ignition (LOI) records indicate that the productivity of local peat began to increase at ~1730 AD. The vegetation in the Sichanghu area experienced several transitions, from temperate desert to dense desert, marsh meadow, and steppe desert vegetation. The climate in the study area was extremely dry during the early stages of the Little Ice Age (LIA) (before 1730 AD) and relatively wet during the late stages (1730–1880 AD). The inferred changes in the moisture conditions of the Sichanghu peatland since the LIA may have been controlled by the extent of Arctic sea ice, the North Atlantic Oscillation, and the Siberian High via the connections of large-scale atmospheric circulations such as the Westerlies.

Keywords Little Ice Age      pollen      vegetation change      moisture condition      Tianshan      arid Central Asia     
Corresponding Author(s): Quan LI   
Just Accepted Date: 29 October 2019   Online First Date: 19 December 2019    Issue Date: 21 July 2020
 Cite this article:   
Weihe REN,Yan ZHAO,Quan LI, et al. Changes in vegetation and moisture in the northern Tianshan of China over the past 450 years[J]. Front. Earth Sci., 2020, 14(2): 479-491.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0788-2
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I2/479
Fig.1  Location of the SCH profile in the arid Central Asia. The tree rings from the Central Tianshan (Chen et al., 2015a; black dot) and the June-July-August (JJA) streamline of the mean 850 hPa (reanalysis data during 1979–2010, data from the National Centers for Environmental Prediction/National Center for Atmospheric Research) were exhibited. EASM= East Asian Summer Monsoon; ISM= Indian Summer Monsoon.
Fig.2  Modern climate conditions recorded by the Qitai Meteorological Station (from 1961 to 2015) in the vicinity of Sichanghu area.
Sample Code Depth
/cm
Material δ13C
/(‰ PDB)
14C age±standard deviation
/yr BP
Calibrated age
(2 Sigma, cal. year CE)
Probability
Beta-383641 24 Sedge leaves -26.5 110±30 1802–1938 0.694
Beta-417756 54 Sedge seeds 120±30 1679–1939 1
Beta-383643 72 Sedge leaves -26.9 230±30 1636–1805 0.909
Beta-389554 72 Sedge seeds -24.5 220±30 1642–1805 0.889
Beta-383644 91 Sedge leaves -27.3 300±30 1490–1602 0.729
Tab.1  Accelerator mass spectrometry (AMS) 14C dates and calibration of the SCH profile.
Fig.3  Chronology result for the SCH profile based on the Bacon model. The shaded region shows the error ranges (90%) of the model permutations. Acc. = acceleration.
Fig.4  Lithology and records of grain size and LOI indices of the SCH profile. (a) Lithology; (b) Grain size distribution (as the grain size of sand>64 µm), that of silt within 4–64 µm, and that of clay<4 µm); (c) Mean grain size (µm); (d) Content of organic matter (%); (e) Content of carbonate (%); (f) Content of silicates (%).
Fig.5  Pollen percentage diagram of the SCH profile. Only major taxa and the dominant biomes, such as desert vegetation and steppe, are shown. The open curves indicate 5 × exaggerations.
Fig.6  Results of principal component analysis of samples and major pollen taxa for SCH profile.
Fig.7  Comparisons among the A/C ratio, PCA-1 scores from the SCH profile, and the MAP data from the adjacent Qitai Meteorological Station (http://data.cma.cn/site/index.html). Arrows indicate the overall trends toward the present.
Fig.8  Correlations among the SCH records and other paleoclimate records in the vicinity. (a) A/C ratio; (b) Mean grain size; (c) Charcoal concentration in this study; (d) Palmer Drought Severity Index (PDSI) in central Tianshan (Chen et al., 2015a); (e) Synthesized effective moisture changes in ACA (Chen et al., 2010a).
Fig.9  Correlations among the SCH records and other worldwide paleoclimate records. (a) Temperature reconstruction for Asia (PAGES 2k Consortium, 2013); (b) observed (dark green curve) and reconstructed changes in sea ice extent during autumn in the Barents–Kara Sea (blue curve) (Zhang et al., 2018); (c) Siberian High sea level pressure (SLP) proxy (Meeker and Mayewski, 2002); (d) reconstructed North Atlantic Oscillation (NAO, light blue curve following Trouet et al., 2009; black curve following Cook et al., 2002); (e) A/C ratio variations in the SCH profile (this study). The gray shaded bars indicate the relatively wet intervals since the 1550s.
1 V B Aizen, E M Aizen, D R Joswiak, K Fujita, N Takeuchi, S A Nikitin (2006). Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol, 43(1): 49–60
https://doi.org/10.3189/172756406781812078
2 C B An, Y B Lu, J J Zhao, S C Tao, W M Dong, H Li, M Jin, Z L Wang (2012). A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): implications for Central Asia. Holocene, 22(1): 43–52
https://doi.org/10.1177/0959683611405244
3 A N Beni, H Lahijani, R M Harami, K Arpe, S A G Leroy, N Marriner, M Berberian, V Andrieu-Ponel, M Djamali, A Mahboubi, P J Reimer (2013). Caspian Sea level changes during the last millennium: historical and geological evidence from the south Caspian Sea. Clim Past, 9(4): 1645–1665
https://doi.org/10.5194/cp-9-1645-2013
4 M Blaauw, J A Christen (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal, 6(3): 457–474
https://doi.org/10.1214/11-BA618
5 B M Buckley, K J Anchukaitis, D Penny, R Fletcher, E R Cook, M Sano, C Nam, A Wichienkeeo, T T Minh, T M Hong (2010). Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA, 107(15): 6748–6752
https://doi.org/10.1073/pnas.0910827107 pmid: 20351244
6 X Y Cao, U Herzschuh, J Ni, Y Zhao, T Bohmer (2015). Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years. Holocene, 25(1): 79–91
https://doi.org/10.1177/0959683614556385
7 F H Chen, J H Chen, J Holmes, I Boomer, P Austin, J B Gates, N L Wang, S J Brooks, J W Zhang (2010a). Moisture changes over the last millennium in arid Central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev, 29(7–8): 1055–1068
https://doi.org/10.1016/j.quascirev.2010.01.005
8 F H Chen, X Z Huang, J W Zhang, J A Holmes, J H Chen (2006). Humid Little Ice Age in Central Asia documented by Bosten Lake, Xinjiang, China. Sci China Earth Sci, 49(12): 1280–1290
https://doi.org/10.1007/s11430-006-2027-4
9 F Chen, Y J Yuan, W S Wei, S L Yu, T W Zhang, H M Shang, R B Zhang, L Qin, Z A Fan (2015a). Tree-ring recorded hydroclimatic change in Tianshan mountains during the past 500 years. Quat Int, 358: 35–41
https://doi.org/10.1016/j.quaint.2014.09.057
10 F Chen, Z Yu, M Yang, E Ito, S Wang, D B Madsen, X Huang, Y Zhao, T Sato, H John B. Birks, I Boomer, J Chen, C An, B Wünnemann (2008). Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27(3): 351–364
https://doi.org/10.1016/j.quascirev.2007.10.017
11 F H Chen, J H Chen, W Huang, S Q Chen, X Z Huang, L Y Jin, J Jia, X J Zhang, C B An, J W Zhang, Y Zhao, Z C Yu, R H Zhang, J B Liu, A F Zhou, S Feng (2019). Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth Sci Rev, 192: 337–354
https://doi.org/10.1016/j.earscirev.2019.03.005
12 J H Chen, F H Chen, S Feng, W Huang, J B Liu, A F Zhou (2015b). Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: spatial patterns and possible mechanisms. Quat Sci Rev, 107: 98–111
https://doi.org/10.1016/j.quascirev.2014.10.012
13 J H Chen, F H Chen, E L Zhang, S J Brooks, A F Zhou, J W Zhang (2009). A 1000-year chironomid-based salinity reconstruction from varved sediments of Sugan Lake, Qaidam Basin, arid Northwest China, and its palaeoclimatic significance. Chin Sci Bull, 54(20): 3749–3759
https://doi.org/10.1007/s11434-009-0201-8
14 Y Chen, J Ni, U Herzschuh (2010b). Quantifying modern biomes based on surface pollen data in China. Global Planet Change, 74(3–4): 114–131
https://doi.org/10.1016/j.gloplacha.2010.09.002
15 T Chiba, K Endo, T Sugai, T Haraguchi, R Kondo, J Kubota (2016). Reconstruction of Lake Balkhash levels and precipitation/evaporation changes during the last 2000 years from fossil diatom assemblages. Quat Int, 397: 330–341
https://doi.org/10.1016/j.quaint.2015.08.009
16 J Cohen, J A Screen, J C Furtado, M Barlow, D Whittleston, D Coumou, J Francis, K Dethloff, D Entekhabi, J Overland, J Jones (2014). Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci, 7(9): 627–637
https://doi.org/10.1038/ngeo2234
17 E R Cook, R D D’Arrigo, M E Mann (2002). A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation Index since A.D. 1400. J Clim, 15(13): 1754–1764
https://doi.org/10.1175/1520-0442(2002)015<1754:AWVMRO>2.0.CO;2
18 N K Davi, R D’Arrigo, G C Jacoby, E R Cook, K J Anchukaitis, B Nachin, M P Rao, C Leland (2015). A long-term context (931–2005 CE) for rapid warming over Central Asia. Quat Sci Rev, 121: 89–97
https://doi.org/10.1016/j.quascirev.2015.05.020
19 W E Dean (1974). Determination of carbonate and organic-matter in calcareous sediments and sedimentary-rocks by loss on ignition: comparison with other methods. J Sediment Petrol, 44(1): 242–248
https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D
20 A Eichler, W Tinner, S Brütsch, S Olivier, T Papina, M Schwikowski (2011). An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev, 30(9–10): 1027–1034
https://doi.org/10.1016/j.quascirev.2011.02.007
21 K Fægri, J Iversen (1989). Textbook of Pollen Analysis. London: John Wiley and Sons
22 V I Ferronskii, V A Polyakov, V S Brezgunov, L S Vlasova, Y A Karpychev, A F Bobkov, V V Romaniovskii, T Johnson, D Ricketts, K Rasmussen (2003). Variations in the hydrological regime of Kara-Bogaz-Gol Gulf, Lake Issyk-Kul, and the Aral Sea assessed based on data of bottom sediment studies. Water Resour, 30(3): 252–259
https://doi.org/10.1023/A:1023826011601
23 E C Grimm (1987). CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci, 13(1): 13–35
https://doi.org/10.1016/0098-3004(87)90022-7
24 J Guiot, C Goeury (1996). PPPbase, a software for statistical analysis of paleoecological and paleoclimatological data. Dendrochronologia, 14: 295–300
25 O Heiri, A F Lotter, G Lemcke (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol, 25(1): 101–110
https://doi.org/10.1023/A:1008119611481
26 U Herzschuh (2007). Reliability of pollen ratios for environmental reconstructions on the Tibetan Plateau. J Biogeogr, 34(7): 1265–1273
https://doi.org/10.1111/j.1365-2699.2006.01680.x
27 B Hong, F Gasse, M Uchida, Y Hong, X Leng, Y Shibata, N An, Y Zhu, Y Wang (2015). Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years. Sci Rep, 4(1): 5279
https://doi.org/10.1038/srep05279 pmid: 24923304
28 W Huang, S Feng, J H Chen, F H Chen (2015a). Physical mechanisms of summer precipitation variations in the Tarim Basin in northwestern China. J Clim, 28(9): 3579–3591
https://doi.org/10.1175/JCLI-D-14-00395.1
29 X Z Huang, C Z Chen, W N Jia, C B An, A F Zhou, J W Zhang, M Jin, D S Xia, F H Chen, E C Grimm (2015b). Vegetation and climate history reconstructed from an alpine lake in central Tianshan Mountains since 8.5 ka BP. Palaeogeogr Palaeoclimatol Palaeoecol, 432: 36–48
https://doi.org/10.1016/j.palaeo.2015.04.027
30 J W Hurrell (1995). Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science, 269(5224): 676–679
https://doi.org/10.1126/science.269.5224.676 pmid: 17758812
31 J Lean (2000). Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys Res Lett, 27(16): 2425–2428
https://doi.org/10.1029/2000GL000043
32 G Q Li, F H Chen, D S Xia, H Yang, X J Zhang, D Madsen, C Oldknow, H T Wei, Z G Rao, M R Qiang (2018). A Tianshan Mountains loess-paleosol sequence indicates anti-phase climatic variations in arid Central Asia and in East Asia. Earth Planet Sci Lett, 494: 153–163
https://doi.org/10.1016/j.epsl.2018.04.052
33 Y C Li (2012). Pollen-vegetation-climate relationship in some desert and steppe communities in Northern China. In: Schluchter C, Nietlispach J, XVIII INQUA Congress Abstracts, Quat Int, 279–280
https://doi.org/10.1016/j.quaint.2012.08.727
34 W G Liu, Z H Liu, Z S An, X L Wang, H Chang (2011). Wet climate during the ‘Little Ice Age’ in the arid Tarim Basin, northwestern China. Holocene, 21(3): 409–416
https://doi.org/10.1177/0959683610378881
35 C X Luo, Z Zheng, P Tarasov, A D Pan, K Y Huang, C Beaudouin, F Z An (2009). Characteristics of the modern pollen distribution and their relationship to vegetation in the Xinjiang region, northwestern China. Rev Palaeobot Palynol, 153(3–4): 282–295
https://doi.org/10.1016/j.revpalbo.2008.08.007
36 Q F Ma, L P Zhu, J B Wang, J T Ju, X M Lü, Y Wang, Y Guo, R M Yang, T Kasper, T Haberzettl, L Y Tang (2017). Artemisia/Chenopodiaceae ratio from surface lake sediments on the central and western Tibetan Plateau and its application. Palaeogeogr Palaeoclimatol Palaeoecol, 479: 138–145
https://doi.org/10.1016/j.palaeo.2017.05.002
37 M E Mann, Z Zhang, S Rutherford, R S Bradley, M K Hughes, D Shindell, C Ammann, G Faluvegi, F Ni (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957): 1256–1260
https://doi.org/10.1126/science.1177303 pmid: 19965474
38 L D Meeker, P A Mayewski (2002). A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. Holocene, 12(3): 257–266
https://doi.org/10.1191/0959683602hl542ft
39 PAGES 2k Consortium (2013). Continental-scale temperature variability during the past two millennia. Nat Geosci, 6: 339–346 doi:10.1038/ngeo1797
40 D E Paulsen, H C Li, T L Ku (2003). Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat Sci Rev, 22(5–7): 691–701
https://doi.org/10.1016/S0277-3791(02)00240-8
41 I C Prentice, J Guiot, B Huntley, D Jolly, R Cheddadi (1996). Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim Dyn, 12(3): 185–194
https://doi.org/10.1007/BF00211617
42 J G Qin, D Taylor, P Atahan, X R Zhang, G X Wu, J Dodson, H B Zheng, F Itzstein-Davey (2011). Neolithic agriculture, freshwater resources and rapid environmental changes on the lower Yangtze, China. Quat Res, 75(1): 55–65
https://doi.org/10.1016/j.yqres.2010.07.014
43 Z G Rao, D D Wu, F X Shi, H C Guo, J T Cao, F H Chen (2019). Reconciling the ‘westerlies’ and ‘monsoon’ models: a new hypothesis for the Holocene moisture evolution of the Xinjiang region, NW China. Earth Sci Rev, 191: 263–272
https://doi.org/10.1016/j.earscirev.2019.03.002
44 C C Raible, M Yoshimori, T F Stocker, C Casty (2007). Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Clim Dyn, 28(4): 409–423
https://doi.org/10.1007/s00382-006-0188-7
45 R Code Team (2012). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing
46 P J Reimer, E Bard, A Bayliss, J W Beck, P G Blackwell, C B Ramsey, C E Buck, H Cheng, R L Edwards, M Friedrich, P M Grootes, T P Guilderson, H Haflidason, I Hajdas, C Hatté, T J Heaton, D L Hoffmann, A G Hogg, K A Hughen, K F Kaiser, B Kromer, S W Manning, M Niu, R W Reimer, D A Richards, E M Scott, J R Southon, R A Staff, C S M Turney, J van der Plicht (2013). Intcal13 and marine13 radiocarbon age calibration curves 0–50000 years Cal BP. Radiocarbon, 55(4): 1869–1887
https://doi.org/10.2458/azu_js_rc.55.16947
47 Y F Shi, Y P Shen, E Kang, D L Li, Y J Ding, G W Zhang, R J Hu (2006). Recent and future climate change in Northwest China. Clim Change, 80(3–4): 379–393
https://doi.org/10.1007/s10584-006-9121-7
48 M Song, A F Zhou, X N Zhang, C Zhao, Y X He, W Q Yang, W G Liu, S H Li, Z H Liu (2015). Solar imprints on Asian inland moisture fluctuations over the last millennium. Holocene, 25(12): 1935–1943
https://doi.org/10.1177/0959683615596839
49 C J F Ter Braak, P Šmilauer (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Ithaca, NY: Microcomputer Power
50 F Tian, U Herzschuh, A Dallmeyer, Q H Xu, S Mischke, B K Biskaborn (2013). Environmental variability in the monsoon–westerlies transition zone during the last 1200 years: lake sediment analyses from central Mongolia and supra-regional synthesis. Quat Sci Rev, 73: 31–47
https://doi.org/10.1016/j.quascirev.2013.05.005
51 V Trouet, J Esper, N E Graham, A Baker, J D Scourse, D C Frank (2009). Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science, 324(5923): 78–80
https://doi.org/10.1126/science.1166349 pmid: 19342585
52 F X Wang (1995). Pollen Morphology in China. Beijing: Science Press (in Chinese)
53 N L Wang, X Jiang, L G Thompson, M E Davis (2007). Accumulation rates over the past 500 years recorded in ice cores from the northern and southern Tibetan Plateau, China. Arct Antarct Alp Res, 39(4): 671–677
https://doi.org/10.1657/1523-0430(07-507)[WANG]2.0.CO;2
54 S W Wang, J L Ye, D Y Gong (1998). Climate in China during the Little Ice Age. Quat Sci, 18(1): 54–64 (in Chinese)
55 H C Wei, Y Zhao (2016). Surface pollen and its relationships with modern vegetation and climate in the Tianshan Mountains, northwestern China. Veg Hist Archaeobot, 25(1): 19–27
https://doi.org/10.1007/s00334-015-0530-2
56 B Y Wu, J Z Su, R H Zhang (2011). Effects of autumn-winter Arctic sea ice on winter Siberian High. Chin Sci Bull, 56(30): 3220–3228
https://doi.org/10.1007/s11434-011-4696-4
57 J L Wu, J J Liu, S M Wang (2004). Climatic change record from stable isotopes in Lake Aibi, Xinjiang during the past 1500 years. Quat Sci, 24(5): 585–590 (in Chinese)
58 S Yan, Z C Kong, Z J Yang (2003). Pollen analysis and its significance of the Sichanghu section in Jimusaer county, Xijiang. Acta Bot Bor-Occid Sin, 23(4): 531–536 (in Chinese)
59 B Yang, A Braeuning, K R Johnson, Y F Shi (2002). General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett, 29(9): 1–4
https://doi.org/10.1029/2001GL014485
60 M X Yang, T D Yao, H J Wang (2006). Microparticle content records of the Dunde ice core and dust storms in northwestern China. J Asian Earth Sci, 27(2): 223–229
https://doi.org/10.1016/j.jseaes.2005.03.007
61 Z J Yang, Y Zhang, H B Ren, S Yan, Z C Kong, K P Ma, J Ni (2016). Altitudinal changes of surface pollen and vegetation on the north slope of the Middle Tianshan Mountains, China. J Arid Land, 8(5): 799–810
https://doi.org/10.1007/s40333-016-0085-9
62 T D Yao, K Q Jiao, L D Tian, Z H Yang, W L Shi, L G Thompson (1996a). Climatic variations since the Little Ice Age recorded in the Guliya ice core. Sci China Ser D Earth Sci, 39(6): 587–596
https://doi.org/10.1360/yd1996-39-6-587
63 T D Yao, L G Thompson, D H Qin, L D Tian, K Q Jiao, Z H Yang, C Xie (1996b). Variations in temperature and precipitation in the past 2000 a on the Xizang (Tibet) Plateau-Guliya ice core record. Sci China Ser D Earth Sci, 39(4): 425–433
https://doi.org/10.1360/yd1996-39-4-425
64 H Zhang, Y Zhang, Z C Kong, Z J Yang, Y M Li, P E Tarasov (2015). Late Holocene climate change and anthropogenic activities in north Xinjiang: evidence from a peatland archive, the Caotanhu Wetland. Holocene, 25(2): 323–332
https://doi.org/10.1177/0959683614558646
65 Q Zhang, C D Xiao, M H Ding, T F Dou (2018). Reconstruction of autumn sea ice extent changes since 1289AD in the Barents-Kara Sea, Arctic. Sci China Earth Sci, 61(9): 1279–1291
https://doi.org/10.1007/s11430-017-9196-4
66 Y Zhang, Z C Kong, S Yan, Z J Yang, J Ni (2004). “Medieval Warm Period” in Xinjiang—rediscussion on paleoenvironment of the Sichanghu profile in Gurbantunggut Desert. Quat Sci, 24(6): 701–708 (in Chinese)
67 Y Zhang, Z C Kong, S Yan, Z J Yang, J Ni (2009). “Medieval Warm Period” on the northern slope of central Tianshan Mountains, Xinjiang, NW China. Geophys Res Lett, 36(11): L11702
https://doi.org/10.1029/2009GL037375
68 Y Zhang, P A Meyers, X T Liu, G P Wang, X H Ma, X Y Li, Y X Yuan, B Wen (2016). Holocene climate changes in the Central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China. Quat Sci Rev, 152: 19–30
https://doi.org/10.1016/j.quascirev.2016.09.016
69 Y Zhao, F R Li, Y T Hou, J H Sun, W W Zhao, Y Tang, H Li (2012a). Surface pollen and its relationships with modern vegetation and climate on the Loess Plateau and surrounding deserts in China. Rev Palaeobot Palynol, 181: 47–53
https://doi.org/10.1016/j.revpalbo.2012.05.007
70 Y Zhao, H Y Liu, F R Li, X Z Huang, J H Sun, W W Zhao, U Herzschuh, Y Tang (2012b). Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. Holocene, 22(12): 1385–1392
https://doi.org/10.1177/0959683612449762
71 Y Zhao, Z C Yu, X J Liu, C Zhao, F H Chen, K Zhang (2010). Late Holocene vegetation and climate oscillations in the Qaidam Basin of the northeastern Tibetan Plateau. Quat Res, 73(1): 59–69
https://doi.org/10.1016/j.yqres.2008.11.007
72 Y Zhao, Z C Yu, Y Tang, H Li, B Yang, F R Li, W W Zhao, J H Sun, J H Chen, Q Li, A F Zhou (2014). Peatland initiation and carbon accumulation in China over the last 50,000 years. Earth Sci Rev, 128: 139–146
https://doi.org/10.1016/j.earscirev.2013.11.003
73 Y Zhao, Z Yu, W W Zhao (2011). Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes? Quat Sci Rev, 30(9–10): 1173–1184
https://doi.org/10.1016/j.quascirev.2011.02.006
[1] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[2] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[3] Furong LI, Yan ZHAO, Jinghui SUN, Wenwei ZHAO, Xiaoli GUO, Ke ZHANG. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau[J]. Front Earth Sci, 2011, 5(3): 252-261.
[4] Furong LI, Jinghui SUN, Yan ZHAO, Xiaoli GUO, Wenwei ZHAO, Ke ZHANG, . Ecological significance of common pollen ratios: A review[J]. Front. Earth Sci., 2010, 4(3): 253-258.
[5] Xiaozhong HUANG, Gang ZHOU, Yanlin MA, Fahu CHEN, Qinghai XU, . Pollen distribution in large freshwater lake of arid region: a case study on the surface sediments from Bosten Lake, Xinjiang, China[J]. Front. Earth Sci., 2010, 4(2): 174-180.
[6] Rongke XU, Xiongfei CAI, Yulian ZHANG, Liang SHAN, Yaoyu CHEN, Jianhong QI, Gang WANG, . Impact of phased uplift of Tibetan Plateau on environmental changes since late Middle Pleistocene: Palynological records in the three terraces of Middle Shiquan River[J]. Front. Earth Sci., 2009, 3(4): 402-410.
[7] Fang TIAN, Xianyong CAO, Qinghai XU, Yuecong LI. A laboratorial study on the influence of alkaline and oxidative environment on the preservation of Pinus tabulaeformis pollen[J]. Front Earth Sci Chin, 2009, 3(2): 226-230.
[8] ZHANG Yulan, LONG Jiangping. Sporopollen and algae research of core B106 in the northern South China Sea and its paleoenvironmental evolution[J]. Front. Earth Sci., 2008, 2(2): 157-161.
[9] LIU Zhanhong, LI Sitian, XIN Renchen, XU Changgui, CHENG Jianchun. The paleoclimatic records and the relevance with the formation of hydrocarbon source rocks: A case study of Huanghekou depression, Bohaiwan basin[J]. Front. Earth Sci., 2008, 2(1): 73-82.
[10] MENG Peng, LIU Li, GAO Yuqiao, QU Xiyu, SUN Xiaoming. An application of micropaleontology-sequence stratigraphy method in stratigraphic division —An example for the study of the Paleogene in the Guangjiapu area, Chengbei fault-step zone, Dagang[J]. Front. Earth Sci., 2007, 1(2): 157-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed