Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2010, Vol. 4 Issue (3) : 253-258    https://doi.org/10.1007/s11707-010-0112-7
Research articles
Ecological significance of common pollen ratios: A review
Furong LI,Jinghui SUN,Yan ZHAO,Xiaoli GUO,Wenwei ZHAO,Ke ZHANG,
Key Laboratory of Western China’s Environmental System (Ministry of Education), Research School of Arid Environment and Climate Change, Lanzhou University, Lanzhou 730000, China;
 Download: PDF(173 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Pollen ratios have been commonly used to indicate landscape change and climate variation. However, the reliability of these indicators needs to be verified by studies on modern pollen process. Here, we synthesized the major pollen ratios used in previous studies and found that pollen ratios are valuable indicators for the change of vegetation types and climate, e.g., precipitation and moisture. Artemisia/Chenopodiaceae (A/C) ratio could increase from desert to steppe and positively correlate with mean annual precipitation (MAP). Artemisia/Cyperaceae (A/Cy) ratio could be used to identify cool meadow and warm steppe, and it is positively correlated with temperature of July (TJuly) and negatively correlated with MAP. Arboreal pollen/nonarboreal pollen (AP/NAP) ratio can be used as a semi-quantitative indicator for landscape and regional precipitation changes. In spite of the significant climatic and environmental implications of the pollen ratios, they were also questioned in some studies under various circumstances and thus caution is needed when using them to indicate climate in different vegetation zones.
Keywords pollen ratios      vegetation change      climate change      
Issue Date: 05 September 2010
 Cite this article:   
Furong LI,Yan ZHAO,Wenwei ZHAO, et al. Ecological significance of common pollen ratios: A review[J]. Front. Earth Sci., 2010, 4(3): 253-258.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-010-0112-7
https://academic.hep.com.cn/fesci/EN/Y2010/V4/I3/253
Betancourt J L, Latorre C, Rech J A, Quade J, Rylander K A(2000). A 22,000-year record of monsoonal precipitation fromnorthern Chile’s Atacama Desert. Science, 289(5484): 1542―1546
Birks H J B, Birks H H(1980). Quaternary palaeoecology. London: Edward Arnold
Cour P, Zheng Z, Duzer D, Calleja M, Yao Z(1999). Vegetationaland climatic significance of modern pollen rain in northwestern Tibet. Rev Palaeobot Palynol, 104(3―4): 183―204
El-Moslimany A P(1982). The late Quaternaryvegetational history of the Zagros and Taurus Mountains in the regionsof Lake Mirabad, Lake Zeribar, and Lake Van-a reappraisal. In: Bintliff J, vanZeist W, eds. Palaeoclimates, Palaeoenvironments and HumanCommunities in the Eastern Mediterranean Region in Later Prehistory.BAR Int. Ser.133. ii. London, 343―351
El-Moslimany A P(1987). The late Pleistoceneclimate of the Lake Zeribar region, Kurdistan, western lran, deducedfrom the ecology and pollen production of nonarboreal pollen. Vegetation, 72: 131―139
El-Moslimany A P(1990). Ecological significanceof common nonarboreal pollen: examples from drylands of the MiddleEast. Rev Palaeobot Palynol, 64(1―4): 343―350

doi: 10.1016/0034-6667(90)90150-H
Fowell S J B, Hansen B C S, Peck J A, Khosbayar P, Ganbold E(2003). Mid to late Holocene climate evolution of the Lake TelmenBasin, North Central Mongolia, based on palynological data. Quat Res, 59(3): 353―363

doi: 10.1016/S0033-5894(02)00020-0
Frenzel B(2002). History of flora and vegetation duringthe Quaternary. Prog Bot, 63: 368―385
Herzschuh U(2007). Reliability of pollen ratios forenvironmental reconstructions on the Tibetan Plateau. J Biogeogr, 34(7): 1265―1273

doi: 10.1111/j.1365-2699.2006.01680.x
Herzschuh U, Kramer A, Mischke S, Zhang C J(2009). Quantitative climate and vegetationtrends since the late glacial on the northeastern Tibetan Plateaudeduced from Koucha Lake pollen spectra. Quat Res, 71(2): 162―171

doi: 10.1016/j.yqres.2008.09.003
Herzschuh U, Tarasov P, Wünnemann B, Hartmann K(2004). Holocene vegetation and climate ofthe Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol, 211(1―2): 1―17

doi: 10.1016/j.palaeo.2004.04.001
IPCC (2007). IPCC WGI Fourth Assessment Report, Summaryfor Policymakers. Paris: The 10th Session of Working Group I of the IPCC
Latorre C, Betancourt J L, Rylander K A, Quade J(2002). Vegetation invasions into absolutedesert: a 45,000 year rodent midden record from the Calama-Salar deAtacama basins, northern Chile (lat 22–24-S). Bulletin of the Geological Society of America, 114(3): 349―366

doi: 10.1130/0016-7606(2002)114<0349:VIIADA>2.0.CO;2
Liu H Y, Cui H T, Pott R, Speier M(1999). The surface pollen of the woodland-steppe ecotone insoutheastern Inner Mongolia, China. RevPalaeobot Palynol, 105(3―4): 237―250

doi: 10.1016/S0034-6667(98)00074-8
Liu H Y, Wang Y, Tian Y H, Zhu J L, Wang H Y(2006). Climaticand anthropogenic control of surface pollen assemblages in East Asiansteppes. Rev Palaeobot Palynol, 138(3―4): 281―289

doi: 10.1016/j.revpalbo.2006.01.008
Liu K B, Reese C A, Thompson L G(2005). Ice-corepollen record of climatic changes in the central Andes during thelast 400 years. Quat Res, 64(2): 272―278

doi: 10.1016/j.yqres.2005.06.001
Liu K B, Reese C A, Thompson L G(2007). A potentialpollen proxy for ENSO derived from the Sajama ice core. Geophys Res Lett, 34(9): L09504

doi: 10.1029/2006GL029018
Ren G(1999). Vegetation and human activities duringthe last 3000 years at the southeastern edge of Horqin Sandy Land. Acta Geogr Sin, 19(1): 42―48(in Chinese)
Tang L Y, Shen C M, Li C H, Peng J L, Liu H, Liu K B, Morrill C, Overpeck J T, Coel J E, Yang B(2009). Pollen-inferred vegetation and environmental changes in the centralTibetan Plateau since 8200 yr BP, Sciencein China Series D: Earth Sciences, 52(8): 1104―1114

doi: 10.1007/s11430-009-0080-5
Tarasov P E, Cheddadi R, Guiot J, Bottema S, Peyron O, Belmonte J, Ruizsanchez V, Saadi F, Brewer S(1998b). A method to determinewarm and cool steppe biomes from pollen data; application to the Mediterraneanand Kazakhstan Regions. J Quaternary Sci, 13(4): 335―344

doi: 10.1002/(SICI)1099-1417(199807/08)13:4<335::AID-JQS375>3.0.CO;2-A
Xu Q H, Li Y C, Yang X L, Zheng Z H(2007). Quantitative relationship between pollen and vegetationin northern China. Science in China SeriesD: Earth Sciences, 50(4): 582―599

doi: 10.1007/s11430-007-2044-y
Yan S(1991). The characteristics of Quaternarysporo-pollen assemblage and the vegetation succession in Xinjiang. Arid Land Geography14:1―9 (in Chinese)
Yu G, Prentice I C, Harrison S P, Sun X J(1998). Pollen based biome reconstructionsfor China at 0 and 6000 years. J Biogeogr, 25(6): 1055―1069

doi: 10.1046/j.1365-2699.1998.00237.x
Yu G, Tang L Y, Yang X D, Ke X K, Harrison S P(2001). Modernpollen samples from alpine vegetation on the Tibetan Plateau. Glob Ecol Biogeogr, 10(5): 503―519

doi: 10.1046/j.1466-822X.2001.00258.x
Zhao Y, Herzschuh U(2009). Modern pollen representation of source vegetation inthe Qaidam Basin and the surrounding mountains, north-eastern TibetanPlateau. Vegetation History and Archaeobotany, 18(3): 245―260

doi: 10.1007/s00334-008-0201-7
Zhao Y, Yu Z C, Chen F H, Liu X J, Ito E(2008). Sensitiveresponse of desert vegetation to moisture change based on a near-annualresolution pollen record from Gahai Lake in the Qaidam Basin, NorthwestChina. Global Planet Change, 62(1―2): 107―114

doi: 10.1016/j.gloplacha.2007.12.003
[1] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[2] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[3] Weihe REN, Yan ZHAO, Quan LI, Jianhui CHEN. Changes in vegetation and moisture in the northern Tianshan of China over the past 450 years[J]. Front. Earth Sci., 2020, 14(2): 479-491.
[4] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[5] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[6] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[7] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[8] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[9] Xin JIA,Shuangwen YI,Yonggang SUN,Shuangye WU,Harry F. LEE,Lin WANG,Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[10] Le Wang,Shenglian Guo,Xingjun Hong,Dedi Liu,Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[11] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
[12] Guanghui DONG,Honggao LIU,Yishi YANG,Ying YANG,Aifeng ZHOU,Zhongxin WANG,Xiaoyan REN,Fahu CHEN. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
[13] Jing WU,Lichun TANG,Rayman MOHAMED,Qianting ZHU,Zheng WANG. Modeling and assessing international climate financing[J]. Front. Earth Sci., 2016, 10(2): 253-263.
[14] He ZHANG,Fulu TAO,Dengpan XIAO,Wenjiao SHI,Fengshan LIU,Shuai ZHANG,Yujie LIU,Meng WANG,Huizi BAI. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China[J]. Front. Earth Sci., 2016, 10(2): 315-327.
[15] Zhuoran LIANG,Tingting GU,Zhan TIAN,Honglin ZHONG,Yuqi LIANG. Agro-climatic adaptation of cropping systems under climate change in Shanghai[J]. Front. Earth Sci., 2015, 9(3): 487-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed