Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2012, Vol. 6 Issue (2) : 188-195    https://doi.org/10.1007/s11707-012-0325-z
RESEARCH ARTICLE
Derivative vegetation indices as a new approach in remote sensing of vegetation
Svetlana M. KOCHUBEY1, Taras A. KAZANTSEV1,2()
1. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kiev, Vasylkivska 31/17, 03022, Ukraine; 2. Estonian University of Life Sciences, Tartu, Fr.R. Kreutzwaldi 5, EE-51014, Estonia
 Download: PDF(334 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper focuses on the advantages of derivative vegetation indices over simple reflectance-based indices that are traditionally used for remote sensing of vegetation. The idea of using reflectance derivatives instead of simple reflectance spectra was proposed several decades ago. Despite this, it has not been widely used in monitoring systems because the derivatives lack reliable parameters. In addition, most satellite monitoring systems are not equipped with hyperspectral sensors, which are considered necessary for operating with the reflectance derivatives. Here, we present original data indicating that the chlorophyll-related derivative index D725/D702 we derived can be accurately estimated from a reflectance spectrum of 10 nm resolution that would be suitable for most satellite-based sensors. Furthermore, the index is not sensitive to soil reflectance and can therefore be used for testing of open crops. Presence of blanc reflectance is also unnecessary. Preliminary results of index testing are presented. Perspectives on using this and other derivative indices are discussed.

Keywords derivative vegetation indices      remote sensing      vegetation status     
Corresponding Author(s): KAZANTSEV Taras A.,Email:antarsih@ukr.net   
Issue Date: 05 June 2012
 Cite this article:   
Svetlana M. KOCHUBEY,Taras A. KAZANTSEV. Derivative vegetation indices as a new approach in remote sensing of vegetation[J]. Front Earth Sci, 2012, 6(2): 188-195.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0325-z
https://academic.hep.com.cn/fesci/EN/Y2012/V6/I2/188
Fig.1  Reflectance spectra of model plant–soil system consisting of winter wheat leaves with different chlorophyll contents and soil of two types: A – low chlorophyll content, sand; B – high chlorophyll content, sand; C – low chlorophyll content, dark soil; D – high chlorophyll content, dark soil. 1, 2, and 3 correspond to 100%, 50% and 25% projective covering, respectively; 4 – background only
Chl contents/(mg·dm-2)(chemically determined)BackgroundProjective covering/%Deviation from variant of 100% projective soil covering, ratio*
D725/D702NDVI**
2.9soil501.090.82
251.150.45
sand501.110.64
251.160.24
5.7soil501.040.60
251.070.20
sand501.030.80
251.030.42
8.1soil500.990.57
250.980.20
sand500.940.78
250.880.39
Tab.1  Influence of incomplete projective soil covering on chlorophyll estimation with / index and NDVI
Fig.2  The 1st derivative plots of reflectance spectral curves of wheat leaf corresponding to different spectral resolution: A-1 nm; B-5 nm; C-10 nm
Chl contents/(mg·dm-2)(chemically determined)Spectral resolution/nmIndex magnitudeDeviation from variant of 1nm spectral resolution, ratio*
1.510.43-
50.441.02
100.461.07
4.510.71-
50.771.08
100.731.03
8.111.41-
51.390.98
101.390.98
Tab.2  Changes in magnitude of / index computed with reflectance spectral curves of different resolution (winter wheat leaves)
Chl content/(mg·dm-2) (chemically detrmined)Spectral resolution/nmD725/D702Deviation from variant of 1.5 nm spectral resolution, ratio*
2.51.50.98-
50.991.01
101.011.02
4.21.51.88-
52.041.08
101.941.04
6.61.52.43-
52.561.05
102.461.01
Tab.3  Changes in magnitude of / index computed with reflectance spectral curves of different resolution (winter wheat crops)
Chl contents /(mg·dm-2)(chemically determined)BackgroundProjective covering/%D725/D702Deviation from variant of 100% projective soil covering, ratio*
2.9-1000.55-
dark soil500.601.09
250.631.15
light sand500.611.11
250.641.16
5.7-1000.99-
dark soil501.031.04
251.061.07
light sand501.021.03
251.021.03
8.1-1001.39-
dark soil501.380.99
251.370.98
light sand501.340.94
251.240.88
Tab.4  Changes in magnitude of / index at 10 nm spectral resolution in reflectance spectra of plant–soil systems, simulating incomplete projective covering
Fig.3  Heterogeneity of chlorophyll content in different areas of one of the tested crops of winter wheat. A – Photo of the crop; B – distribution of chlorophyll content, dark color corresponds to high chlorophyll content
Fig.4  Reflectance spectra of vine leaves containing chlorophyll (1) or antocyanins only (2), or a combination of both pigments (3)
Fig.5  Changes in derivative vegetation indices estimated for maize plants grown under oil contamination
1 Baret F, Champion I, Giot G, Podaire A (1987). Monitoring wheat canopies with a high spectral resolution radiometer. Remote Sens Environ , 22(3): 367–378
doi: 10.1016/0034-4257(87)90089-7
2 Chupakhina G N, Maslennikov P V (2004). Plant adaptation to oil stress. Russ J Ecol , 35(5): 290–295
doi: 10.1023/B:RUSE.0000040681.75339.59
3 Collins W (1978). Remote sensing of crop type and maturity. Photogramm Eng Remote Sensing , 44(1): 43–55
4 Ery?lmaz F (2006). The relationships between salt stress and anthocyanin content in higher plants. Biotechnol, Biotechnol Equip , 20: 47–52
5 Feild T S, Lee D W, Holbrook N M (2001). Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol , 127(2): 566–574
doi: 10.1104/pp.010063 pmid:11598230
6 Ferns D C, Zara S J, Barber J (1984). Application pf of high spectral resolution spectroradiometry to vegetation. Photogramm Eng Remote Sensing , 50: 1725–1735
7 Filella I, Penuelas J (1994). The red edge position and shape as indicators of plant chlorophyll content, biomass and hidric status. Int J Remote Sens , 15(7): 1459–1470
doi: 10.1080/01431169408954177
8 Filella I, Serrano I, Serra J, Penuelas J (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci , 35(5): 1400–1405
doi: 10.2135/cropsci1995.0011183X003500050023x
9 Gitelson A A, Merzlyak M N (1994). Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol , 143(3): 286–292
doi: 10.1016/S0176-1617(11)81633-0
10 Gitelson A A, Merzlyak M N, Chivkunova O B (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol , 74(1): 38–45
doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 pmid:11460535
11 González-Sanpedro M C, Le Toan T, Moreno J, Kergoat L, Rubio E (2008). Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data. Remote Sens Environ , 112(3): 810–824
doi: 10.1016/j.rse.2007.06.018
12 Hipskind J, Wood K, Nicholson R L (1996). Localised stimulation of anthocyanin accumulation and delineation of pathogen ingress in maize genetically resistant to Biplaris maydis race O. Physiol Mol Plant Pathol , 49(4): 247–256
doi: 10.1006/pmpp.1996.0052
13 Horler D N H, Dockrey M, Barber J (1983). The red edge of plant reflectance. Int J Remote Sens , 4(2): 273–288
doi: 10.1080/01431168308948546
14 Kanemasu E T, Niblett C L, Manges H, Lenhert D, Newman M A (1974). Wheat: its growth and disease severity as deduced from ERTS-1. Remote Sens Environ , 3(4): 255–260
doi: 10.1016/0034-4257(74)90046-7
15 Kazantsev T A (2007). Spectral properties and contactless determination of anthocyanins content in leaves of Parthenocissus quinquefolia (L.) Planch. Physiology and Biochemisty of Cultivated Plants (Russian). 39: 382–390
16 Kochubey S M, Bidyuk P I (2003). Novel approach to remote sensing of vegetation. Proc SPIE , 5093: 181–188
17 Kochubey S M, Kazantsev T A (2007). Changes in the first derivatives of leaf reflectance spectra of various plants induced by variations of chlorophyll content. J Plant Physiol , 164(12): 1648–1655
doi: 10.1016/j.jplph.2006.11.007 pmid:17292510
18 Kochubey S M, Kobets N I, Shadchina T M (1987). The shape of the reflectance spectra of leaves as an information basis for remote diagnosing of crop state. Physiology and Biochemistry of Cultivated Plants (Russian) , 19: 539–545
19 Kochubey S M, Kobets N I, Shadchina T M (1988). The quantitative analysis of the shape of reflectance spectra of leaves of plants as a method for testing their state. Physiology and Biochemistry of Cultivated Plants (Russian) , 20: 535–539
20 Kochubey S M, Kobets N I, Shadchyna T M (1990). Spectral properties of leaves as a basis for remote diagnostics. Naukova Dumka, Kyiv (in Russian)
21 Krupa Z, Baranowska M, Orzol D (1996). Can anthocyanins be considered as heavy metal stress indicator in higher plants? Acta Physiol Plant , 18(2): 147–151
22 Lorenzen B, Jensen A (1989). Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sens Environ , 27(2): 201–209
doi: 10.1016/0034-4257(89)90018-7
23 Maselli F (2004). Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote Sens Environ , 89(4): 423–433
doi: 10.1016/j.rse.2003.10.020
24 Mark Hodges D, Nozzolillo C (1995). Anthocyanin and anthocyanoplast content of cruciferous seedlings subjected to mineral nutrient deficiencies. J Plant Physiol , 147(6): 749–754
doi: 10.1016/S0176-1617(11)81488-4
25 Miller J R, Hare E W, Wu J (1990). Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. Int J Remote Sens , 11(10): 1755–1773
doi: 10.1080/01431169008955128
26 Milton N M, Monat D A (1989). Remote sensing of vegetation responses to natural and cultural environment condition. Photogramm Eng Remote Sensing , 55(8): 1167–1173
27 Moran J A, Mitchell A K, Goodmanson G, Stockburger K A (2000). Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiol , 20(16): 1113–1120
doi: 10.1093/treephys/20.16.1113 pmid:11269963
28 Neill S O, Gould K S, Kilmartin P A, Mitchell K A, Markham K R (2002). Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant Cell Environ , 25(4): 539–547
doi: 10.1046/j.1365-3040.2002.00837.x
29 Rock B N, Hoshizaki T, Miller J R (1988). Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sens Environ , 24(1): 109–127
doi: 10.1016/0034-4257(88)90008-9
30 Sid'ko A F (2004). Remote assay for chlorophyll photosynthetic potential of crops on the example of wheat. Biol Bull Russ Acad Sci , 31(5): 450–456
doi: 10.1023/B:BIBU.0000043769.80086.02
31 Smith K L, Steven M D, Colls J J (2004). Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens Environ , 92(2): 207–217
doi: 10.1016/j.rse.2004.06.002
32 Unganai L S, Kogan F N (1998). Drought monitoring and corn yield estimation in Southern Africa from AVHRR data. Remote Sens Environ , 63(3): 219–232
doi: 10.1016/S0034-4257(97)00132-6
33 Wang Z J, Wang J H, Liu L Y, Huang W J, Zhao C J, Wang C Z (2004). Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Res , 90(2–3): 311–321
doi: 10.1016/j.fcr.2004.04.004
34 Wellburn A R (1994). The spectral determination of chlorophylls a and b as well, as the total carotenoids using various solvents with spectrophotometers of different resolution. J Plant Physiol , 144(3): 307–313
doi: 10.1016/S0176-1617(11)81192-2
35 Yatsenko V A, Kochubey S M, Donets V V, Kazantsev T A (2005). Hardware-software complex for chlorophyll estimation in phytocenoses under field conditions. Proc SPIE , 5964: 1–6
36 Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H (2002). Vegetation stress detection through chlorophyll a + b estimation and fluorescence effects on hyperspectral imagery. J Environ Qual , 31(5): 1433–1441
doi: 10.2134/jeq2002.1433 pmid:12371159
37 Zarco-Tejada P J, Miller J R, Morales A, Berjón A, Agüera J (2004). Hyperspectral indicies and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ , 90(4): 463–476
doi: 10.1016/j.rse.2004.01.017
38 Zarco-Tejada P J, Pushnik J C, Dobrowski S, Ustin S L (2003). Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens Environ , 84(2): 283–294
doi: 10.1016/S0034-4257(02)00113-X
[1] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[2] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[3] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[4] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[5] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[6] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[7] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[8] Shichao CUI, Kefa ZHOU, Rufu DING, Guo JIANG. Estimation of copper concentration of rocks using hyperspectral technology[J]. Front. Earth Sci., 2019, 13(3): 563-574.
[9] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[10] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[11] Zhen LI, Jinghu PAN. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012[J]. Front. Earth Sci., 2018, 12(1): 108-124.
[12] Mohamed Abd Salam EL-VILALY, Kamel DIDAN, Stuart E. MARSH, Willem J.D. VAN LEEUWEN, Michael A. CRIMMINS, Armando Barreto MUNOZ. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA[J]. Front. Earth Sci., 2018, 12(1): 37-51.
[13] Duanyang XU, Alin SONG, Xiao SONG. Assessing the effect of desertification controlling projects and policies in northern Shaanxi Province, China by integrating remote sensing and farmer investigation data[J]. Front. Earth Sci., 2017, 11(4): 689-701.
[14] Sizhang TANG,Chaomin SHEN,Guixu ZHANG. Adaptive regularized scheme for remote sensing image fusion[J]. Front. Earth Sci., 2016, 10(2): 236-244.
[15] Man-Chung CHIM,Jiayi PAN,Wenfeng LAI. Modified optical remote sensing algorithms for the Pearl River Estuary[J]. Front. Earth Sci., 2015, 9(4): 732-741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed