Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (2) : 400-411    https://doi.org/10.1007/s11707-024-1101-6
Machine learning methods for predicting the uniaxial compressive strength of the rocks: a comparative study
Tao WEN1,2,3(), Decheng LI1, Yankun WANG1,3, Mingyi HU1,3, Ruixuan TANG1,3
1. School of Geosciences, Yangtze University, Wuhan 430100, China
2. Badong National Observation and Research Station of Geohazards, China University of Geosciences, Wuhan 430074, China
3. Jiacha County Branch of Hubei Yangtze University Technology Development Co., Ltd, Shannan 856499, China
 Download: PDF(4949 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The uniaxial compressive strength (UCS) of rocks is a critical index for evaluating the mechanical properties and construction of an engineering rock mass classification system. The most commonly used method for determining the UCS in laboratory settings is expensive and time-consuming. For this reason, UCS can be estimated using an indirect determination method based on several simple laboratory tests, including point-load strength, rock density, longitudinal wave velocity, Brazilian tensile strength, Schmidt hardness, and shore hardness. In this study, six data sets of indices for different rock types were utilized to predict the UCS using three nonlinear combination models, namely back propagation (BP), particle swarm optimization (PSO), and least squares support vector machine (LSSVM). Moreover, the best prediction model was examined and selected based on four performance prediction indices. The results reveal that the PSO–LSSVM model was more successful than the other two models due to its higher performance capacity. The ratios of the predicted UCS to the measured UCS for the six data sets were 0.954, 0.982, 0.9911, 0.9956, 0.9995, and 0.993, respectively. The results were more reasonable when the predicted ratio was close to a value of approximately 1.

Keywords uniaxial compressive strength      particle swarm optimization      least squares support vector machine      prediction model      prediction performance     
Corresponding Author(s): Tao WEN   
Online First Date: 05 June 2024    Issue Date: 19 July 2024
 Cite this article:   
Tao WEN,Decheng LI,Yankun WANG, et al. Machine learning methods for predicting the uniaxial compressive strength of the rocks: a comparative study[J]. Front. Earth Sci., 2024, 18(2): 400-411.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-024-1101-6
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I2/400
References Prediction models Input parameters Output parameters Samples
Mohamad et al. (2015) PSO-ANN BTS, Is(50), Vp, DD UCS 40
Momeni et al. (2015b) PSO-ANN Rn, Vp, Is(50), DD UCS 66
Jahed Armaghani et al. (2016) ICA-ANN Rn, Vp, Is(50) UCS 108
Jahed Armaghani et al. (2016) NLMR, ANN, ANFIS Rn, Vp, Is(50) UCS 124
Li and Tan (2016) MLR, LSSVM TS, Vp, Is(50),DD UCS 24
Mohamad et al. (2018) PSO-BP Vp, Is(50), DD, MC,Id2 UCS 38
Abdi et al. (2020) PSO-ANN Rn, Vp, DD UCS 60
Aladejare (2020) Several empirical equations Is(50), ne, DD, BPI, SHH UCS 60
Li et al. (2020) GMDH Rn, Vp, DD UCS 86
Teymen and Mengüç (2020) SRA, MRA, ANN, ANFIS, GEP BTS, Vp, Is(50),DD, SHH, SSH UCS 93
Gowida et al. (2021) ANN, ANFIS, SVM ROP, GPM, SPP, RPM, T, WOB UCS 1771
Zhang et al. (2022) GA-SEL Vp, Is(50), BPI, Rn UCS 166
Liu et al. (2022) XGBoost Rn, Vp, Is(50) UCS 108
Skentou et al. (2023) ANN-LM, ANN-PSO, ANN-ICA Rn, Vp, ne UCS 274
Tab.1  Some of existing studies in field of rock strength prediction
Fig.1  The flow chart of the PSO-BP model.
Fig.2  The flow chart of the PSO-LSSVM model.
Fig.3  Key differences of the three models.
Fig.4  Relationships between different parameters and the measured UCS for different rock types from different places: (a) Is(50); (b) Vp; (c) BTS; (d) SHH; (e) SSH; (f) density.
Fig.5  Measured value and predicted value of the UCS for testing data at different rock types: (a) shale; (b) sandstone; (c) volcanic rock; (d) slightly weathered granite; (e) different rock types from different places; (f) granite with different weathered degrees.
Types R2 RMSE VAF MAE
BP PSO-BP PSO-LSSVM BP PSO-BP PSO-LSSVM BP PSO-BP PSO-LSSVM BP PSO-BP PSO-LSSVM
1 0.92 0.95 0.96 21.33 7.88 8.70 93.85 93.09 85.74 7.33 0.54 2.67
2 0.94 0.97 0.96 42.00 17.82 5.82 77.52 93.04 95.26 6.21 0.80 0.71
3 0.76 0.82 0.67 80.07 63.51 4.64 36.10 73.23 95.22 16.45 11.85 0.47
4 0.39 0.49 0.83 48.40 40.55 3.46 74.78 67.00 95.66 3.70 3.62 0.16
5 0.81 0.95 0.97 86.82 46.70 35.95 97.85 94.47 98.57 4.54 0.96 0.45
6 0.77 0.64 0.79 110.06 139.12 99.63 30.80 38.00 33.82 9.28 9.59 6.37
Tab.2  The error analysis of the predicted results for the three models
Fig.6  Measured UCS and predicted UCS for training data and validation data at different rock types: (a) shale; (b) sandstone; (c) volcanic rock; (d) slightly weathered granite; (e) different rock types from different places; (f) granite with different weathered degrees.
1 Y, Abdi E, Momeni R R Khabir (2020). A reliable PSO-based ANN approach for predicting unconfined compressive strength of sandstones.Open Constr Build Technol J, 14(1): 237–249
https://doi.org/10.2174/1874836802014010237
2 A E Aladejare (2020). Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests.J Rock Mech Geotech Eng, 12(2): 256–268
https://doi.org/10.1016/j.jrmge.2019.08.001
3 Armaghani D, Jahed Amin M F, Mohd S, Yagiz R S, Faradonbeh R A Abdullah (2016). Prediction of the uniaxial compressive strength of sandstone using various modeling techniques.Int J Rock Mech Min Sci, 85: 174–186
https://doi.org/10.1016/j.ijrmms.2016.03.018
4 P G, Asteris A, Mamou M, Hajihassani M, Hasanipanah M, Koopialipoor T T, Le N, Kardani D J Armaghani (2021). Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks.Transp Geotechnics, 29: 100588
https://doi.org/10.1016/j.trgeo.2021.100588
5 Z L, Cai W Y, Xu Y D, Meng C, Shi R B Wang (2016). Prediction of landslide displacement based on GA-LSSVM with multiple factors.Bull Eng Geol Environ, 75(2): 637–646
https://doi.org/10.1007/s10064-015-0804-z
6 A, Gowida S, Elkatatny H Gamal (2021). Unconfined compressive strength (UCS) prediction in real-time while drilling using artificial intelligence tools.Neural Comput Appl, 33(13): 8043–8054
https://doi.org/10.1007/s00521-020-05546-7
7 Z, Hu T, Wen K, Zheng Y Wang (2021). A Method for determining the mechanical parameters of solution pore and crevice limestone based on porosity.Adv Civ Eng, 2021: 1–14
https://doi.org/10.1155/2021/8833370
8 U C, Iyare O O, Blake R Ramsook (2021). Estimating the uniaxial compressive strength of argillites using Brazilian tensile strength, ultrasonic wave velocities, and elastic properties.Rock Mech Rock Eng, 54(4): 2067–2078
https://doi.org/10.1007/s00603-020-02358-y
9 Armaghani D, Jahed Mohamad E, Tonnizam M, Hajihassani S, Yagiz H Motaghedi (2016). Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances.Eng Comput, 32(2): 189–206
https://doi.org/10.1007/s00366-015-0410-5
10 C D, Li H M, Tang Y F, Ge X L, Hu L Q Wang (2014). Application of back-propagation neural network on bank destruction forecasting for accumulative landslides in the three Gorges Reservoir Region, China.Stochastic Environ Res Risk Assess, 28(6): 1465–1477
https://doi.org/10.1007/s00477-014-0848-9
11 R, Li S, Xu Y, Zhou S, Li J, Yao K, Zhou X Liu (2020). Toward group applications of Zinc-Silver battery: a classification strategy based on PSO-LSSVM.IEEE Access, 8: 4745–4753
https://doi.org/10.1109/ACCESS.2019.2962835
12 W, Li Z Y Tan (2016). Comparison on rock strength prediction models based on MLR and LS-SVM.Mining Res Develop, 36(11): 36–40
13 Z, Liu Armaghani D, Jahed P, Fakharian D Y, Li Ulrikh D, Vladimirovich Orekhova N, Nikolaevna Khedher K Mohamed (2022). Rock strength estimation using several tree-based ML techniques.Comput Model Eng Sci, 133(3): 799–824
https://doi.org/10.32604/cmes.2022.021165
14 C G Looney (1996). Advances in feedforward neural networks: Demystifying knowledge acquiring black boxes.IEEE Trans Knowl Data Eng, 8(2): 211–226
https://doi.org/10.1109/69.494162
15 E T, Mohamad D J, Armaghani E, Momeni A H, Yazdavar M Ebrahimi (2018). Rock strength estimation: a PSO-based BP approach.Neural Comput Appl, 30(5): 1635–1646
https://doi.org/10.1007/s00521-016-2728-3
16 E T, Mohamad Armaghani D, Jahed E, Momeni Nezhad Khalil Abad S V Alavi (2015). Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach.Bull Eng Geol Environ, 74(3): 745–757
https://doi.org/10.1007/s10064-014-0638-0
17 E, Momeni R, Nazir D J, Armaghani M F M, Amin E T Mohamad (2015a). Prediction of unconfined compressive strength of rocks: a review paper.J Teknol, 77(11): 43–50
https://doi.org/10.11113/jt.v77.6393
18 E, Momeni Armaghani D, Jahed M, Hajihassani Amin M F Mohd (2015b). Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks.Measurement, 60: 50–63
https://doi.org/10.1016/j.measurement.2014.09.075
19 T, Rahman K Sarkar (2021). Lithological control on the estimation of uniaxial compressive strength by the P-Wave velocity using supervised and unsupervised learning.Rock Mech Rock Eng, 54(6): 3175–3191
https://doi.org/10.1007/s00603-021-02445-8
20 A D, Skentou A, Bardhan A, Mamou M E, Lemonis G, Kumar P, Samui D J, Armaghani P G Asteris (2023). Closed-form equation for estimating unconfined compressive strength of granite from three non-destructive tests using soft computing models.Rock Mech Rock Eng, 56(1): 487–514
https://doi.org/10.1007/s00603-022-03046-9
21 A, Teymen E C Mengüç (2020). Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks.Int J Min Sci Technol, 30(6): 785–797
https://doi.org/10.1016/j.ijmst.2020.06.008
22 Y, Wang H, Tang J S, Huang T, Wen J, Ma J Zhang (2022). A comparative study of different machine learning methods for reservoir landslide displacement prediction.Eng Geol, 298: 106544
https://doi.org/10.1016/j.enggeo.2022.106544
23 T, Wen H M, Tang Y K, Wang C Y, Lin C R Xiong (2017). Landslide displacement prediction using the GA-LSSVM model and time series analysis: a case study of Three Gorges Reservoir, China.Nat Hazards Earth Syst Sci, 17(12): 2181–2198
https://doi.org/10.5194/nhess-17-2181-2017
24 T, Wen Z, Hu Y, Wang Z (2021) Zhang . Variation law of air temperature of a high-geotemperature tunnel during the construction. Lithosphere, 2021(Special 7) : 2541884
25 T, Wen Z, Hu Y, Wang R (2023) Tang . Genetic mechanism of high geotemperature in tunnels in consideration of temperature monitoring and hydrogeochemical analysis. Environ Sci Pollution Res, 1–17
26 T, Wen Y K, Wang H M, Tang J R, Zhang M Y Hu (2023). Damage evolution and failure mechanism of red-bed rock under drying–wetting cycles.Water, 15(15): 2684
https://doi.org/10.3390/w15152684
27 X H, Xue M Xiao (2017). Deformation evaluation on surrounding rocks of underground caverns based on PSO-LSSVM.Tunn Undergr Space Technol, 69: 171–181
https://doi.org/10.1016/j.tust.2017.06.019
28 H J, Zhang S C, Wu Z X Zhang (2022). Prediction of uniaxial compressive strength of rock via genetic algorithm—selective ensemble learning.Nat Resour Res, 31(3): 1721–1737
https://doi.org/10.1007/s11053-022-10065-4
29 J R, Zhang C Y, Lin H M, Tang T, Wen D D, Tannant B C Zhang (2024). Input-parameter optimization using a SVR based ensemble model to predict landslide displacements in a reservoir area–a comparative study.App Soft Comput, 150: 111107
https://doi.org/10.1016/j.asoc.2023.111107
30 L X, Zhao P B, Shui F, Jiang H Q, Qiu S M, Ren Y K, Li Y Zhang (2014). Using monitoring data of surface soil to predict whole crop-root zone soil water content with PSO-LSSVM, GRNN and WNN.Earth Sci Inform, 7(1): 59–68
https://doi.org/10.1007/s12145-013-0130-6
31 X, Zhu S Q, Ma Q, Xu W D Liu (2018). A WD-GA-LSSVM model for rainfall-triggered landslide displacement prediction.J Mt Sci, 15(1): 156–166
https://doi.org/10.1007/s11629-016-4245-3
[1] Xiaoping LIU, Shuli CHEN, Li ZHUO, Jun LI, Kangning HUANG. Multi-sensor image registration by combining local self-similarity matching and mutual information[J]. Front. Earth Sci., 2018, 12(4): 779-790.
[2] Zhanqiang CHANG,Jinzhuang WANG,Mi CHEN,Zurui AO,Qi YAO. A novel ground surface subsidence prediction model for sub-critical mining in the geological condition of a thick alluvium layer[J]. Front. Earth Sci., 2015, 9(2): 330-341.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed