Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2009, Vol. 3 Issue (1) : 32-37    https://doi.org/10.1007/s11783-008-0068-y
Research article
Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates
Xiaowen ZHANG1, Weili DAI1, Shuangfeng YIN1(), Shenglian LUO1(), Chak-Tong AU2
1. College of Chemistry and Chemical Engineering, Hunan University; 2. Department of Chemistry, Hong Kong Baptist University
 Download: PDF(383 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new applications of organobismuth compounds, cationic organobismuth complex with 5,6,7,12-tetrahydrodibenz[c,f]1,5 azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using terminal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the maximum turnover frequency was up to 10740 h-1 at 120°C and 3 MPa CO2 pressure when tetrabutylammonium iodide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity, demonstrating a potential in industrial application.

Keywords cationic organobismuth complex      terminal epoxide      carbon dioxide      coupling      cyclic carbonate     
Corresponding Author(s): YIN Shuangfeng,Email:sf_yin@hnu.cn; sllou@hnu.cn; LUO Shenglian,Email:sf_yin@hnu.cn; sllou@hnu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Xiaowen ZHANG,Weili DAI,Shuangfeng YIN, et al. Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates[J]. Front Envir Sci Eng Chin, 2009, 3(1): 32-37.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-008-0068-y
https://academic.hep.com.cn/fese/EN/Y2009/V3/I1/32
Fig0  
entrycatalystresultsd)
XPO/%SPC/%TOF/h-1
l[Bi]000
2[Bi] + Bu4NCl (1:1)60.3> 994824
3[Bi] + Bu4NBr (1:1)90.7> 997256
4[Bi] + Bu4NI (1:1)97.5> 997800
5Bu4NCl (0.015 mmol)
6Bu4NBr (0.015 mmol)1.0
7Bu4NI (0.015 mmol)1.6
8b)BiCl3 + Bu4NI(1:1)16.7> 991336
9b)BiBr3 + Bu4NI(1:1)23.3> 991864
10b)BiI3 + Bu4NI(1:1)22.8> 991824
11b)Ph3Bi + Bu4NI (1:1)2.3
12c)[Bi] + Bu4NI (1:1)82.4> 999888
13c)[Bi] + Bu4NI (1:0.5)60.3> 997236
14c)[Bi] + Bu4NI (1:1.5)86.0> 9910320
15c)[Bi] + Bu4NI (1:2)89.5> 9910740
Tab0  Catalytic performance of Catalysts
1 SakakuraT, ChoiJ C, YasudaH. Transformation of carbon dioxide. Chem. Rev. , 2007, 107(6): 2365–2387
doi: 10.1021/cr068357u
2 YangH, XuZ, FanM, GuptaR, SlimaneR B, BlandA E, WrightI. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. , 2008, 20(1): 14–27
doi: 10.1016/S1001-0742(08)60002-9
3 KasugaK, KabataN. The fixation of carbon dioxide with 1,2-epoxypropane catalyzed by alkali-metal halide in the presence of a crown ether. Inorg. Chim. Acta , 1997, 257(2): 277–278
doi: 10.1016/S0020-1693(96)05481-3
4 LuX B, ZhangY J, JinK, LuoL M, WangH. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature. J. Catal. , 2004, 227(2): 537–541
doi: 10.1016/j.jcat.2004.07.018
5 JingH, NguyenS T. SnCl4-organic base: Highly efficient catalyst system for coupling reaction of CO2 and epoxides. J. Mol. Catal. A , 2007, 261(1): 12–15
doi: 10.1016/j.molcata.2006.07.057
6 KimH S, KimJ J, KimH, JangH G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J. Catal. , 2003, 220(1): 44–46
doi: 10.1016/S0021-9517(03)00238-0
7 LiF, XiaoL, XiaC, HuB. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron Lett. , 2004, 45(45): 8307–8310
doi: 10.1016/j.tetlet.2004.09.074
8 SunJ, FujitaS, ZhaoF, AraiM. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chem. , 2004, 6(12): 613–616
doi: 10.1039/b413229g
9 XiaoL F, LiF W, PengJ J, XiaC G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A , 2006, 253(1–2): 265–269
10 XiaoL F, LiF W, XiaC G. An easily recoverable and efficient natural biopolymer-supported zinc chloride catalyst system for the chemical fixation of carbon dioxide to cyclic carbonate. Appl. Catal. A , 2005, 279(1–2): 125–129
11 KimY J, VarmaR S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. J. Org. Chem. , 2005, 70(20): 7882–7891
doi: 10.1021/jo050699x
12 ZhaoY, TianJ S, QiX H, HanZ N, ZhuangY Y, HeL N. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A , 2007, 271(1–2): 284–289
13 LuX B, ZhangY J, LiangB, LiX, WangH. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J. Mol. Catal. A , 2004, 210(1–2): 31–34
14 LuX B, HeR, BaiC X. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J. Mol. Catal. A , 2002, 186(1–2): 1–11
15 SunJ M, FujitaS I, ZhaoF Y, AraiM. A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Appl. Catal. A , 2005, 287(2): 221–226
doi: 10.1016/j.apcata.2005.03.035
16 OnoF, QiaoK, TomidaD, YokoyamaC. Rapid synthesis of cyclic carbonates from CO2 and epoxides under microwave irradiation with controlled temperature and pressure. J. Mol. Catal. A , 2007, 263(1–2): 223–226
17 XieH, LiS, ZhangS. Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides. J. Mol. Catal. A , 2006, 250(1–2): 30–34
18 SunJ, WangL, ZhangS, LiZ, ZhangX, DaiW, MoriR. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J. Mol. Catal. A , 2006, 256(1–2): 295–300
19 PaddockR L, NguyenS T. Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc. , 2001, 123(46): 11498–11499
doi: 10.1021/ja0164677
20 JutzF, GrunwaldtJ D, BaikerA. Mn(III)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in “supercritical” CO2. J. Mol. Catal. A , 2008, 279(1): 94–103
doi: 10.1016/j.molcata.2007.10.010
21 BuZ, QinG, CaoS. A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide. J. Mol. Catal. A , 2007, 277(1–2): 35–39
22 SuzukiH, MatanoY. Organobismuth Chemistry. Amsterdam: Elsevier, 2001
23 GagnonA, St-OngeM, LittleK, DuplessisM, BarabeìF. Direct N-cyclopropylation of cyclic amides and azoles employing a cyclopropylbismuth reagent. J. Am. Chem. Soc. , 2007, 129(1): 44–45
doi: 10.1021/ja0676758
24 WuS S, DaiW L, YinS F, LiW S, AuC T. Bismuth subnitrate as an efficient heterogeneous catalyst for acetalization and ketalization of carbonyl compounds with diols. Catal. Lett. , 2008, 124(1–2): 127–132
doi: 10.1007/s10562-008-9435-3
25 BaoM, HayashiT, ShimadaS. Cationic organobismuth complex with 5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocine framework and its coordination complexes with neutral molecules. Organometallics , 2007, 26(7): 1816–1822
doi: 10.1021/om0611453
[1] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[2] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[3] Xu Zhang, Huanhuan Yang, Xinlei Wang, Wen Song, Zhaojie Cui. An extraction- assay system: Evaluation on flavonols in plant resistance to Pb and Cd by supercritical extraction- gas chromatography[J]. Front. Environ. Sci. Eng., 2018, 12(4): 6-.
[4] Minhui XU,Xiaogang GU,Shuguang LU,Zhouwei MIAO,Xueke ZANG,Xiaoliang WU,Zhaofu QIU,Qian SUI. Degradation of carbon tetrachloride in thermally activated persulfate system in the presence of formic acid[J]. Front. Environ. Sci. Eng., 2016, 10(3): 438-446.
[5] XIA Qing,KONG Deyang,LIU Guoqiang,HUANG Qingguo,ALALEWI Aamr,LU Junhe. Removal of 17β-estradiol in laccase catalyzed treatment processes[J]. Front.Environ.Sci.Eng., 2014, 8(3): 372-378.
[6] Wenqiang SUN, Jiuju CAI, Hai YU, Lei DAI. Decomposition analysis of energy-related carbon dioxide emissions in the iron and steel industry in China[J]. Front Envir Sci Eng, 2012, 6(2): 265-270.
[7] Xin TIAN, Hidefumi IMURA, Miao CHANG, Feng SHI, Hiroki TANIKAWA. Analysis of driving forces behind diversified carbon dioxide emission patterns in regions of the mainland of China[J]. Front Envir Sci Eng Chin, 2011, 5(3): 445-458.
[8] Xuan JIA, Hai YAN, Zijing WANG, Huanju HE, Qianqian XU, Haiou WANG, Chunhua YIN, Liqin LIU. Carbon dioxide fixation by Chlorella sp. USTB-01 with a fermentor-helical combined photobioreactor[J]. Front Envir Sci Eng Chin, 2011, 5(3): 402-408.
[9] Pratim BISWAS, Wei-Ning WANG, Woo-Jin AN. The energy-environment nexus: aerosol science and technology enabling solutions[J]. Front Envir Sci Eng Chin, 2011, 5(3): 299-312.
[10] CHEN Guowei, XI Pengge, XU Deqian, YU Hanqing. Comparison between inhibitor and uncoupler for minimizing excess sludge production of an activated sludge process[J]. Front.Environ.Sci.Eng., 2007, 1(1): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed