Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 281-288    https://doi.org/10.1007/s11783-009-0032-5
Research articles
Catalytic decomposition of low level ozone with gold nanoparticles supported on activated carbon
Pengyi ZHANG , Bo ZHANG , Rui SHI ,
Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(367 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Highly dispersed gold nanoparticles were supported on coal-based activated carbon (AC) by a sol immobilization method and were used to investigate their catalytic activity for low-level ozone decomposition at ambient temperature. Nitrogen adsorption-desorption, scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts before and after ozone decomposition. The results showed that the supported gold nanoparticles prepared with microwave heating were much smaller and more uniformly dispersed on the activated carbon than those prepared with traditional conduction heating, exhibiting higher catalytic activity for ozone decomposition. The pH values of gold precursor solution significantly influenced the catalytic activity of supported gold for ozone decomposition, and the best pH value was 8. In the case of space velocity of 120000h−1, inlet ozone concentration of 50mg/m3, and relative humidity of 45%, the Au/AC catalyst maintained the ozone removal ratio at 90.7% after 2500min. After being used for ozone decomposition, the surface carbon of the catalyst was partly oxidized and the oxygen content increased accordingly, while its specific surface area and pore volume only decreased a little. Ozone was mainly catalytically decomposed by the gold nanoparticles supported on the activated carbon.
Keywords ozone decomposition      activated carbon      gold nanoparticles      catalysis      sodium citrate      microwave      
Issue Date: 05 September 2009
 Cite this article:   
Pengyi ZHANG,Rui SHI,Bo ZHANG. Catalytic decomposition of low level ozone with gold nanoparticles supported on activated carbon[J]. Front.Environ.Sci.Eng., 2009, 3(3): 281-288.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0032-5
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/281
Yargeau V, Leclair C. Impact of operating conditionson decomposition of antibiotics during ozonation: a review. Ozone-Science & Engineering, 2008, 30(3): 175―188

doi: 10.1080/01919510701878387
Ikehata K, Naghashkar N J, Ei-Din M G. Degradation of aqueous pharmaceuticals by ozonation andadvanced oxidation processes: a review. Ozone-Science & Engineering, 2006, 28(6): 353―414

doi: 10.1080/01919510600985937
Agustina T E, Ang H M, Vareek V K. A review of synergistic effect of photocatalysis andozonation on wastewater treatment. Journalof Photochemistry and Photobiology C: Photochemistry Reviews, 2005, 6(4): 264―273

doi: 10.1016/j.jphotochemrev.2005.12.003
Ikehata K, El-Din M G. Aqueous pesticide degradationby ozonation and ozone-based advanced oxidation processes: a review(Part I). Ozone-Science & Engineering, 2005, 27(2): 83―114

doi: 10.1080/01919510590925220
Ikehata K, El-Din M G. Aqueous pesticide degradationby ozonation and ozone-based advanced oxidation processes: a review(Part II). Ozone-Science & Engineering, 2005, 27(3): 173―202

doi: 10.1080/01919510590945732
Levy J I, Carrothers T J, Tuomisto J T, Hammitt J K, Evans J S. Assessing the public healthbenefits of reduced ozone concentrations. Environmental Health Perspectives, 2001, 109(12): 1215―1226

doi: 10.2307/3454743
Bell M L, Peng R D, Dominici F. The exposure–response curve for ozone and riskof mortality and the adequacy of current ozone regulations. Environmental Health Perspectives, 2006, 114(4): 532―536
Weschler C J. Ozone’s impact on public health: Contributions from indoorexposures to ozone and products of ozone-initiated chemistry. Environmental Health Perspectives, 2006, 114(10): 1489―1496
Niu J L, Tung T C W, Burnett J. Quantification of dust removal and ozone emission ofionizer air-cleaners by chamber testing. Journal of Electrostatics, 2001, 51: 20―24

doi: 10.1016/S0304-3886(01)00118-8
Hubbard H F, Coleman B K, Sarwar G, Corsi R L. Effectsof an ozone-generating air purifier on indoor secondary particlesin three residential dwellings. IndoorAir, 2005, 15(6): 432―444

doi: 10.1111/j.1600-0668.2005.00388.x
Roland U, Holzer F, Kopinke E D. Combination of non-thermal plasma and heterogeneous catalysisfor oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3. AppliedCatalysis B: Environmental, 2005, 58(3―4): 217―226

doi: 10.1016/j.apcatb.2004.11.024
Zhang P Y, Liu J, Zhang Z L. VUV photocatalytic degradation of toluene in the gasphase. Chemistry Letters, 2004, 33(10): 1242―1243

doi: 10.1246/cl.2004.1242
Jeong J, Sekiguchi K, Lee W, Sakamoto K. Photodegradation of gaseous volatile organic compounds (VOCs) usingTiO2 photoirradiated by an ozone-producingUV lamp: decomposition characteristics, identification of by-productsand water-soluble organic intermediates. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 169(3): 277―285
Destaillats H, Lunden M M, Singer B C, Coleman B K, Hodgson A, Weschler C, Nazaroff W. Indoor secondary pollutants from household product emissions in thepresence of ozone: A bench-scale chamber study. Environmental Science & Technology, 2006, 40(14): 4421―4426

doi: 10.1021/es052198z
Bhangar S, Cowlin S C, Singer B C, Sextro R G, Nazaroff W W. Ozone levels in passengercabins of commercial aircraft on North American and transoceanic routes. Environmental Science & Technology, 2008, 42(11): 3938―3943

doi: 10.1021/es702967k
Dhandapani B, Oyama S T. Gas phase ozone decompositioncatalysts. Applied Catalysis B: Environmental, 1997, 11(2): 129―166

doi: 10.1016/S0926-3373(96)00044-6
Einaga H, Harada M, Futamura S. Structural changes in alumina-supported manganese oxidesduring ozone decomposition. Chemical PhysicsLetters, 2005, 408(4―6): 377―380

doi: 10.1016/j.cplett.2005.04.061
Lee P, Davidson J. Evaluation of activated carbonfilters for removal of ozone at the ppb level. American Industrial Hygiene Association Journal, 1999, 60(5): 589―600

doi: 10.1080/00028899908984478
Subrahmanyam C, Bulushev D A, Kiwi-Minsker L. Dynamic behaviour of activated carbon catalysts duringozone decomposition at room temperature. Applied Catalysis B: Environmental, 2005, 61(1―2): 98―106

doi: 10.1016/j.apcatb.2005.04.013
Haruta M. Size- and support-dependency in the catalysis of gold. Catalysis Today, 1997, 36(1):153―166

doi: 10.1016/S0920-5861(96)00208-8
Haruta M, Daté M. Advances in the catalysisof Au nanoparticles. Applied CatalysisA: General, 2001, 222(1―2): 427―437

doi: 10.1016/S0926-860X(01)00847-X
Min B K, Friend C M. Heterogeneous gold-basedcatalysis for green chemistry: Low-temperature CO oxidation and propeneoxidation. Chemical Reviews, 2007, 107(6): 2709―2724

doi: 10.1021/cr050954d
Prati L, Porta F. Oxidation of alcohols andsugars using Au/C catalysts. Applied CatalysisA: General, 2005, 291(1―2): 199―203

doi: 10.1016/j.apcata.2004.11.050
Comotti M, Pina C D, Matarrese R, Rossi M, Siani A. Oxidation of alcohols and sugars usingAu/C catalysts Part 2. Sugars. AppliedCatalysis A: General, 2005, 291(1―2): 204―209

doi: 10.1016/j.apcata.2004.11.051
Baker T A, Friend C M, Kaxiras E. Nature of Cl bonding on the Au(111) surface: Evidenceof a mainly covalent interaction. Journalof the American Chemical Society, 2008, 130(12): 3720―3721

doi: 10.1021/ja7109234
Lin S D, Bollinger M, Vannice M A. Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catalysis Letters, 1993, 17(3―4): 245―262

doi: 10.1007/BF00766147
Biella S, Porta F, Prati L, Rossi M. Surfactant-protectedgold particles: New challenge for gold-on-carbon catalysts. Catalysis Letters, 2003, 90(1―2): 23―29

doi: 10.1023/A:1025808024943
Bianchi C, Porta F, Prati L, Rossi M. Selectiveliquid phase oxidation using gold catalysts. Topics in Catalysis, 2000, 13(3): 231―236

doi: 10.1023/A:1009065812889
Murphy P J, LaGrange M S. Raman spectroscopy of goldchloro-hydroxy speciation in fluids at ambient temperature and pressure:A re-evaluation of the effects of pH and chloride concentration. Geochimica et Cosmochimica Acta, 1998, 62(21―22): 3515―3526

doi: 10.1016/S0016-7037(98)00246-4
Oh H S, Yang J H, Costello C K, Wang Y M, Bare S R, Kung H H, Kung M C. Selective catalytic oxidationof CO: effect of chloride on supported Au catalysts. Journal of Catalysis, 2002, 210(2): 375―386

doi: 10.1006/jcat.2002.3710
[1] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[2] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[3] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[4] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[5] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[6] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[7] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[8] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[9] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[10] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[11] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[12] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[13] Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6-.
[14] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[15] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed