Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (4) : 470-476    https://doi.org/10.1007/s11783-009-0143-z
Research articles
Flow characteristic and wastewater treatment performance of a pilot-scale airlift oxidation ditch
Hongtao PANG,Hanchang SHI,Huiming SHI,
Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(159 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A pilot-scale airlift oxidation ditch using bubble diffuser and baffle as aerator was operated in a wastewater treatment plant (WWTP) to investigate its flow characteristic and wastewater treatment performance. Compared with the conventional oxidation ditch process, effective depth and oxygen utilization efficiency of this new process was improved by underwater aeration. Furthermore, it had a reversed velocity distribution, which decreased from the bottom to the top on vertical section. Velocity measurement showed that a velocity over 0.2m/s at the bottom was sufficient to prevent sludge settlement during long term operation. Application of these concepts would save land area and energy consumption by about 25%―50% and 55%, respectively. In this new system, organic biodegradation and nitrification could be well achieved. Denitrification could occur steadily in the straight part by adjusting the airflow rate. An average TN removal rate of 63% was achieved with dissolved oxygen (DO) concentrations between 0.6mg/L and 1.5mg/L. The main pollutants in the effluent could meet the strictest discharge standard (COD<50mg/L, NH4+―N<5mg/L, and TN<15mg/L) in China now.
Keywords airlift oxidation ditch      flow characteristic      wastewater treatment      
Issue Date: 05 December 2009
 Cite this article:   
Hongtao PANG,Hanchang SHI,Huiming SHI. Flow characteristic and wastewater treatment performance of a pilot-scale airlift oxidation ditch[J]. Front.Environ.Sci.Eng., 2009, 3(4): 470-476.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0143-z
https://academic.hep.com.cn/fese/EN/Y2009/V3/I4/470
Barnes D, Forster C F, Johnstone D W M. Oxidation Ditches in Wastewater Treatment. London: PitmanBooks limited, 1983
Mandt M G, Bell B A. Oxidation Ditches in WastewaterTreatment. Collingwood: Ann Arbor Science Publishers, 1984
US Environmental Protection Agency, Officeof Water. EPA 832-F-00-013 Wastewater TechnologyFact Sheet: Oxidation Ditches. 2000
Gillot S, Capela S, Héduit A. Effect of horizontal flow on oxygen transferin clean water with surfactants. WaterResearch, 2000, 34 (2): 678―683

doi: 10.1016/S0043-1354(99)00167-0
Nicolella C, van Loosdrecht MC M, Heijnen J J. Mass transfer and reactionin a biofilm airlift suspension reactor. Chemical Engineering Science, 1998, 53(15): 2743―2753

doi: 10.1016/S0009-2509(98)00107-9
Talvy S, Cockx A, Line A. Global modeling of a gas–liquid–solid airliftreactor. Chemical Engineering Science, 2005, 60(22): 5991―6003

doi: 10.1016/j.ces.2005.04.067
Shi H C, Yin Y M. China Patent.200510008928.5, 2005
Environmental Protection Agency of JiangsuProvince, China. Discharge standard of mainwater pollutants for municipal wastewater treatment plant of Taihuarea (DB32/1072-2007) (in Chinese)
State Environmental Protection Agency, China. Standard Methods for the Examination of Water and Wastewater. 4th ed. Beijing: Chinese Environmental Science Publishers, 2002 (in Chinese)
Pang H T, Shi H C, Shi H M, Yang C, Yin Y M. Flow characteristic of a pilot scaleairlift oxidation ditch. China EnvironmentalScience, 2008, 28(12): 1057―1061 (in Chinese)
Argaman Y. Singlesludge nitrogen removal in an oxidation ditch. Water Research, 1984, 18 (1): 493―500

doi: 10.1016/0043-1354(84)90123-4
Rittman B E, Langeland W E. Simultaneous denitrificationwith nitrification in single-channel oxidation ditches. Journal of the Water Pollution Control Federation, 1985, 57(4): 300―308
Liu J X, Groenestijn J W, Doddema H J, Wang B Z. Influenceof the aeration brush on nitrogen removal in the oxidation ditch. European Water Pollution Control, 1996, 6: 25―30
Hao X D, Doddema H J, Van Groenestijn J W. Conditions and mechanisms affecting simultaneousnitrification and denitrification in a pasveer oxidation ditch. Bioresource Technology, 1997, 59: 207―215

doi: 10.1016/S0960-8524(96)00143-5
Holman J B, Wareham D G. COD, ammonia and dissolvedoxygen time profiles in the simultaneous nitrification/denitrificationprocess. Biochemical Engineering Journal, 2005, 22: 125―133

doi: 10.1016/j.bej.2004.09.001
Pochana K, Keller J. Study of factors affectingsimultaneous nitrification and denitrification (SND). Water Science and Technology, 1999, 39 (6): 61―68

doi: 10.1016/S0273-1223(99)00123-7
Collivignarelli C, Bertanza G. Simultaneous nitrification-denitrificationprocesses in activated sludge plants performance and applicability. Water Science and Technology, 1999, 40(4-5): 187―194

doi: 10.1016/S0273-1223(99)00575-2
Peng Y Z, Hou H X, Wang S Y. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxicoxidation ditch system. Journal of EnvironmentalSciences, 2008, 20(4): 398―403

doi: 10.1016/S1001-0742(08)62070-7
Liu Y C, Shi H C, Wang Z Q. Variation of dissolved oxygen and optimum control conditionsin carrousel oxidation ditch. China EnvironmentalScience, 2008, 28(9): 843―846 (in Chinese)
Gillot S, Capela S, Heduit A. Effect of horizontal flow on oxygen transfer in cleanwater with surfactants. Water Research, 2000, 34(2): 678―683

doi: 10.1016/S0043-1354(99)00167-0
Gillot S, Heduit A. Effect of air flow rate onoxygen transfer in an oxidation ditch equipped with fine bubble diffusersand slow speed mixers. Water Research, 2000, 34(5): 1756―1762

doi: 10.1016/S0043-1354(99)00323-1
Nakasone H, Ozaki M. Oxidation-ditch process usingfalling water as aerator. Journal of EnvironmentalEngineering, 1995, 121(2): 132―139

doi: 10.1061/(ASCE)0733-9372(1995)121:2(132)
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[4] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[5] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[8] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[9] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[10] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[11] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[12] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[13] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[14] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[15] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed