|
|
Exposure-response of Cr(III)-organic complexes
to Saccharomyces cerevisiae |
Nivedita CHATTERJEE,Zejiao LUO, |
Key Laboratory of Biogeology
and Environmental Geology, Ministry of Education (BGEG), School of
Environmental Studies, China University of Geosciences, Wuhan 430074,
China; |
|
|
Abstract Hexavalent chromium [Cr(VI)] bioreduction produces soluble Cr(III)-organic complexes. The Cr(III)-organic complexes are relatively stable once they are formed, and no data about their toxicity were reported. Therefore, this study aims to investigate the bioavailability and toxicity of the soluble Cr(III)-organic complexes. Saccharomyces cerevisiae L-1 wild type yeast strain was chosen as the model organism and Cr(III)-citrate was selected as the representative compound of the Cr(III)-organic complexes. The short-term chronic aquatic toxicity tests of the Cr(III)-citrate was explored by measuring growth inhibition, direct viable cell count, dry biomass, biosorption, and the amount of CO2 production. Cr(III)-citrate exerted a toxicity of 51mg/L with an EC50, which was calculated from the percent growth inhibition. These toxicity data would be helpful to define the toxic potential of the organo-chromium-III compounds in the environment.
|
Keywords
Cr(III)-organic complexes
Saccharomyces cerevisiae
toxicity
EC50
bioavailability
|
Issue Date: 05 June 2010
|
|
|
Barnhart J. Chromium chemistry and implications for environmentalfate and toxicity. J Soil Contam, 1997, 6: 561–568
|
|
Losi M E, Amrhein C, Frankenberger W TJr. Environmentalbiochemistry of chromium. Rev Environ ContamToxicol, 1994, 136: 91–121
|
|
Dragun J. Element fixation in soil. Soil Chem Hazard Mater, 1988, 75–152
|
|
Arslan, P, Beltrame M, Tomasi A. Intracellular chromium reduction. Biochim Biophys Acta, 1987, 931: 10–15
doi: 10.1016/0167-4889(87)90044-9
|
|
Norseth T. The carcinogenicity of chromium and its salts. Brit J Ind Med, 1986, 43: 649–651
|
|
Dayan A D, Paine A J. Mechanismsof chromium toxicity, carcinogenicity and allergenicity: Review ofthe literature from 1985 to 2000. HumanExp Toxicol, 2001, 20: 439–451
doi: 10.1191/096032701682693062
|
|
Shen H, Wang Y. Characterizationof enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol, 1993, 59: 3771–3777
|
|
Tebo B M, Obraztsova A Y. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), andFe(III) as electron acceptors. FEMS MicrobiolLett, 1998, 162: 193–198
doi: 10.1111/j.1574-6968.1998.tb12998.x
|
|
Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M. Enzymaticreduction of chromate: Comparative studies using sulfate-reducingbacteria. Appl Microbiol Biotechnol, 2001, 5: 95–100
doi: 10.1007/s002530000467
|
|
Garbisu C, Alkorta I, Llama M J, Serra J L. Aerobic chromate reduction by Bacillus subtilisBiodegradation, 1998, 9: 133–141
doi: 10.1023/A:1008358816529
|
|
Park C H, Keyhan M, Wielinga B, Fendorf S, Matin A. Purificationto homogeneity and characterization of novel Pseudomonas putida chromate reductase. Appl Environ Microbiol, 2000, 66: 1788–1795
doi: 10.1128/AEM.66.5.1788-1795.2000
|
|
Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M. NAD(P)H-dependent chromium(VI) reductase of Pseudomonas ambigua G-1: A Cr(V) intermediateis formed during the reduction of Cr(VI) to Cr(III). J Bacteriol, 1992, 174: 5340–5345
|
|
Lovley D R, Phillips E J P. Reduction of chromate by Desulfovibrio vulgaris and Its c3 Cytochrome. Appl Environ Microbiol, 1994, 60: 726–728
|
|
Puzon G J, Roberts A G, Kramer D M, Xun L A. Formation of soluble organo-chromium(III) complexes afterchromate reduction in the presence of cellular organics. Environ Sci Technol, 2005, 39: 2811–2817
doi: 10.1021/es048967g
|
|
Puzon G J, Petersen J N, Roberts A G, Kramer D M, Xun L A. Bacterialflavin reductase systems reduces chromate to a soluble chromium-(III)-NAD+complex. Biochem Biophys Res Commun, 2002, 294: 76–81
doi: 10.1016/S0006-291X(02)00438-2
|
|
Puzon G J, Ranjeet K, Tokala H Z, Yonge D, Peyton B M, Xun L A. Mobility and recalcitranceof organo–chromium(III) complexes. Chemosphere, 2008, 70 (11): 2054–2059
doi: 10.1016/j.chemosphere.2007.09.010
|
|
en.wikipedia.org/wiki/Citrates#cite_ref-0
|
|
Beattie J K, Haight G P J. Progress in Inorganic Chemistry. In: EdwardsJ O, ed. Chromium (VI) Oxidationsof Inorganic Substrates. New York: Interscience, 1972, 93–146
|
|
Cabral M G, Viegas C A, Teixeira M C, Correia L S. Toxicity of chlorinated phenoxyacetic acid herbicidesin the experimental eukaryotic model Saccharomycescerevisiae : Role of pH and of growth phase and size ofthe yeast cell population. Chemosphere, 2003, 51: 47–54
doi: 10.1016/S0045-6535(02)00614-8
|
|
Bitton G. Wastewater microbiology. In: Mitchell R, ed. Toxicity Testingin Wastewater Treatment Plants Using Microorganisms. Wiley Seriesin Ecological and Applied Microbiology. New York: John Wiley & Sons, 1999, 413–426
|
|
Koch H P, Hofeneder M, Bohne B. The yeast test: An alternativemethod for the testing of acute toxicity of drug substances and environmentalchemicals. Meth Find Exp Clin Pharmacol, 1993, 15: 141–152
|
|
Iwahashi H, Fujita K, Takahashi Y. Bioassay for chemical toxicityusing yeast Saccharomyces cerevisiae. WaterSci Technol, 2000, 42: 269–276
|
|
Ribeiro I C, Ver_ıssimo I, Moniz L, Cardoso H, Sousa M J, Soares A M V M, Leao C. Yeasts as a model for assessing the toxicity of the fungicidesPenconazol, Cymoxanil and Dichlofluanid. Chemosphere, 2000, 41: 1637–1642
doi: 10.1016/S0045-6535(00)00039-4
|
|
Avery S V. Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol, 2001, 49: 111–142
doi: 10.1016/S0065-2164(01)49011-3
|
|
Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman J C, Moreno-Sanchez R. Interactions of chromium with microorganismsand plants. FEMS Microbiol Rev, 2001, 25: 335–347
doi: 10.1111/j.1574-6976.2001.tb00581.x
|
|
Sumner E R, Shanmuganathan A, Theodora C, Sideri. Sylvia A, Willetts J E, Avery S V. Oxidative protein damagecauses chromium toxicity in yeast. Microbiology, 2005, 151: 1939–1948
doi: 10.1099/mic.0.27945-0
|
|
Walsh A R, O’Halloran J. ChromiumSpeciation in the tannery Effluent-I. An assessment of techniquesand the role of organic Cr-(III) complexes. Water Res, 1996, 30: 2393–2400
doi: 10.1016/0043-1354(96)00173-X
|
|
Blackwell K J, Tobin J M, Avery S V. Manganese toxicity towards Schharomyces cerevicie: dependence on intracellularand extracellular magnesium conc. ApplMicrobiol Biotechnol, 1998, 49: 751–757
doi: 10.1007/s002530051242
|
|
Schmitt M, Gellert G, Ludwig J, Lichtenberg-Frate H. Phenotypic yeast growth analysis forchronic toxicity testing. Ecotoxicol EnvironSafety, 2004, 59: 142–150
doi: 10.1016/j.ecoenv.2004.06.002
|
|
Boeira L S, Bryce J H, Stewart G G, Flannigan B. Theeffect of combinations of Fusarium mycotoxins (deoxynivalenol, zearalenoneand fumonisin B1) on growth of brewing yeasts. J Appl Microbiol, 2000, 88: 388–403
doi: 10.1046/j.1365-2672.2000.00972.x
|
|
Hrenovic J, Stilinovic B, Dvoracek L. Use of prokaryotic and eukaryoticbiotests to assess toxicity of wastewater from pharmaceutical sources. Acta Chim Slov, 2005, 52: 119–125
|
|
Gomes D S, Riger C J, Pinto M L C, Panek A D, Eleutherio E C A. Evaluation of the role ofAce1 and Yap1 in cadmium absorption using the eukaryotic cell model Saccharomyces cerevisiae. Environ Toxicol Pharmacol. 2005, 20(3): 383–389
doi: 10.1016/j.etap.2005.02.009
|
|
Pill K G, Kupillas G E, Picardal F W, Arnold R G. Estimating the toxicity of chlorinated organic compoundsusing a multiparameter bacterial bioassay. Environ Toxicol Water Qual, 1991, 6: 271–291
doi: 10.1002/tox.2530060302
|
|
Lichtenberg-Fraté H, Schmitt M, Gellertb G, Ludwig J. A yeast-based method forthe detection of cyto and genotoxicity. Toxicol in Vitro, 2003, 17: 709–716
doi: 10.1016/S0887-2333(03)00129-2
|
|
O’Brien T J, GuoHui Jiang G H, Gina Chun G, Mandel H G, Craig S. Westphal C S, Kahen K, Montaser A, States J C, Patierno S R. Incision of trivalent chromium [Cr(III)]-induced DNAdamage by Bacillus caldotenax UvrABC endonuclease. Mutat Res-GenTox En, 2006, 610(1―2): 85–92
|
|
O’Brien T J, Jamie L, Fornsaglio S C and Steven R P. Effects of hexavalent chromium on thesurvival and cell cycle distribution of DNA repair-deficient S.cerevisiae. DNA Repair, 2002, 1: 617–627
doi: 10.1016/S1568-7864(02)00078-2
|
|
Bagchi D, Sidney J S, Bernard W D, Bagchi M and Harry G P. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology, 2002, 180: 5–22
doi: 10.1016/S0300-483X(02)00378-5
|
|
Raspor P, Batic M, Jamnik P, Josic D, Milacic R, Pas M, Recek M, Rezic-Dereani V, Skrt M. The influence of chromium compounds on yeast physiology(a review). Acta Microbiol Immunol Hung, 2000, 47: 143–173
doi: 10.1556/AMicr.47.2000.2-3.2
|
|
Srivastava S, Prakash S, Srivastava M M. Studies on mobilization ofchromium with reference to its plant availability—role of organicacids. Bio Metals, 1999, 12, 201–207
doi: 10.1023/A:1009262609373
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|