Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (6) : 831-838    https://doi.org/10.1007/s11783-012-0393-z
RESEARCH ARTICLE
Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor
Yuanting LI1, Dawei LI1, Wei SONG1, Meng LI1, Jie ZOU2, Yitao LONG1()
1. Key Laboratory for Advanced Materials & Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China; 2. Jiangsu Provincial Supervising & Testing Research Institute for Products Quality, Nanjing 210007, China
 Download: PDF(306 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A disposable biosensor was fabricated using single-walled carbon nanotubes, gold nanoparticles and tyrosinase (SWCNTs-AuNPs-Tyr) modified screen-printed electrodes. The prepared biosensor was applied to the rapid determination of phenolic contaminants within 15 minutes. The SWCNTs-AuNPs-Tyr bionanocomposite sensing layer was characterized with scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry methods. The characterization results revealed that SWCNTs could lead to a high loading of tyrosinase (Tyr) with the large surface area and the porous morphology, while AuNPs could retain the bioactivity of Tyr and enhance the sensitivity. The detection conditions, including working potential, pH of supporting electrolyte and the amount of Tyr were optimumed. As an example, the biosensor for catechol determination displayed a linear range of 8.0 × 10-8 to 2.0 × 10-5 mol·L-1 with a detection limit of 4.5 × 10-8 mol·L-1 (S/N = 3). This method has a rapid response time within 10 s, and shows excellent repeatability and stability. Moreover, the resulting biosensor could be disposable, low-cost, reliable and easy to carry. This kind of new Tyr biosensor provides great potential for rapid, on-site and cost-effective analysis of phenolic contaminants in environmental water samples.

Keywords on-site determination      tyrosinase biosensor      phenolic contaminants      single-walled carbon nanotubes      gold nanoparticles      screen-printed electrodes     
Corresponding Author(s): LONG Yitao,Email:ytlong@ecust.edu.cn   
Issue Date: 01 December 2012
 Cite this article:   
Yuanting LI,Dawei LI,Wei SONG, et al. Rapid method for on-site determination of phenolic contaminants in water using a disposable biosensor[J]. Front Envir Sci Eng, 2012, 6(6): 831-838.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0393-z
https://academic.hep.com.cn/fese/EN/Y2012/V6/I6/831
Fig.1  Left diagram shows the chemical mechanism of the biosensor, and the configuration of the screen printed electrode. Right picture shows the experimental device for the on-site water monitoring. Right inset diagram is the electrochemical i-t response of the biosensor
Fig.2  SEM images of bare-SPE (A) and SWCNTs-AuNPs-Tyr-SPE (B)
Fig.3  The EIS of (a) bare-Tyr-SPE, (b) SWCNTs-Tyr-SPE, (c) AuNPs-Tyr-SPE, (d) SWCNTs-AuNPs-Tyr-SPE, (e) bare-SPE in 5.0 mmol·L KFe(CN)/KFe(CN) (1∶1) + 0.1 mol·L KCl solution. The frequency range was from 0.10 to 100 kHz. In all cases the measured data points are shown as symbols with the calculated fit to the equivalent circuit as solid lines. Inset: equivalent circuit used to model impedance data in the presence of redox couples. R, solution resistance; R, charge-transfer resistance; CPE, constant phase element; Z, Warburg impedance
Fig.4  (A) Cyclic voltammograms of SWCNTs-AuNPs-Tyr-SPE at a scan rate of 50 mV·s in 0.1 mol·L PBS, pH 7.0 without catechol (a) and with 1.0 × 10 mol·L catechol (b); (B) cyclic voltammograms of different disposable sensors at 50 mV·s: (a) bare-SPE; (b) SWCNTs-Tyr-SPE; (c) AuNPs-Tyr-SPE and (d) SWCNTs-AuNPs-Tyr-SPE in 0.1 mol·L PBS, pH 7.0 containing 1.0 × 10 mol·L catechol
Fig.5  (A) Influence of working potential on amperometric response of the biosensor in the absence (curve a) and presence (curve b) of 2.0 μmol·L catechol in 0.1 mol·LPBS, pH 7.0; (B) influence of pH on the amperometric response of 2.0 μmol·L catechol in 0.1 mol·L PBS. Working potential: -0.10 V . Ag/AgCl; (C) influence of concentration of Tyr on the amperometric response of 2.0 μmol·L catechol in 0.10 M PBS, pH 7.0. Working potential: -0.10 V . Ag/AgCl
phenolic contaminantslinear range/(mol·L-1)correlation coefficientdetection limit/(mol·L-1)relative standard deviation(n = 5)sensitivity/[μA(mmol·L-1) -1cm-2]Kmapp / (μmol·L-1)
catechol8.0×10-8 – 2.0×10-50.9954.5×10-84.2%0.178×10324.0
phenol8.3×10-8 – 2.4 × 10-50.9914.5×10-83.9%0.374×10320.1
Tab.1  The response characteristics of the disposable biosensor to phenolic contaminants
Fig.6  (A) Typical current-time response curve for the successive addition of 1.0 mmol·L catechol in 0.1 mol·L PBS, pH 7.0 at SWCNTs-AuNPs-Tyr-SPE at an applied potential of -0.10 V. Ag/AgCl. Inset: the magnification of the first six steps; (B) the calibration curve for catechol obtained at SWCNTs-AuNPs-Tyr-SPE.
sampleadded/(μmol·L-1)found a)/(μmol·L-1)recovery/%
tap water0.500.4896.0
1.671.74104.2
4.174.29102.9
river water8.308.0096.4
0.500.4998.0
1.671.6397.6
4.174.30103.1
8.308.43101.6
Tab.2  Recovery of the disposable Tyr biosensor
1 Sun M, Yao R S, You Y H, Deng S S, Gao W X. Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as catalyst. Frontiers of Environmental Science & Engineering in China , 2007, 1(1): 95-98
doi: 10.1007/s11783-007-0018-0
2 Armentrout D N, McLean J D, Long M W. Trace determination of phenolic compounds in water by reversed phase liquid chromatography with electrochemical detection using a carbon-polyethylene tubular anode. Analytical Chemistry , 1979, 51(7): 1039-1045
doi: 10.1021/ac50043a060
3 Amlathe M S, Upadhyay M S, Gupta V K. Spectrophotometric determination of trace amounts of phenol in waste water and biological fluids. Analyst (London) , 1987, 112(10): 1463-1465
doi: 10.1039/an9871201463
4 Ameer Q, Adeloju S B. Development of a potentiometric catechol biosensor by entrapment of tyrosinase within polypyrrole film. Sensors and Actuators B, Chemical , 2009, 140(1): 5-11
doi: 10.1016/j.snb.2009.03.056
5 Yin H S, Zhou Y L, Xu J, Ai S, Cui L, Zhu L. Amperometric biosensor based on tyrosinase immobilized onto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and its application to determine bisphenol A. Analytica Chimica Acta , 2010, 659(1-2): 144-150
doi: 10.1016/j.aca.2009.11.051
6 Deng C, Chen J, Nie Z, Si S. A sensitive and stable biosensor based on the direct electrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbon nanotube-modified electrode. Biosensors & Bioelectronics , 2010, 26(1): 213-219
doi: 10.1016/j.bios.2010.06.013
7 Kochana J, Gala A, Adamski J. Titania sol-gel–derived tyrosinase-based amperometric biosensor for determination of phenolic compounds in water samples. Examination of interference effects. Analytical and Bioanalytical Chemistry , 2008, 391(4): 1275-1281
doi: 10.1007/s00216-007-1798-6
8 Tembe S, Inamdar S, Haram S, Karve M, D’Souza S F. Electrochemical biosensor for catechol using agarose–guar gum entrapped tyrosinase. Journal of Biotechnology , 2007, 128(1): 80-85
doi: 10.1016/j.jbiotec.2006.09.020
9 Liu Z M, Liu Y L, Yang H F, Yang Y, Shen G, Yu R. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Analytica Chimica Acta , 2005, 533(1): 3-9
doi: 10.1016/j.aca.2004.10.077
10 Lu L M, Zhang L, Zhang X B, Huan S, Shen G, Yu R. A novel tyrosinase biosensor based on hydroxyapatite–chitosan nanocomposite for the detection of phenolic compounds. Analytica Chimica Acta , 2010, 665(2): 146-151
doi: 10.1016/j.aca.2010.03.033
11 Li Y F, Liu Z M, Liu Y L, Yang Y, Shen G, Yu R. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Analytical Biochemistry , 2006, 349(1): 33-40
doi: 10.1016/j.ab.2005.11.017
12 Wang S F, Tan Y M, Zhao D M, Liu G D. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles–chitosan nanocomposite. Biosensors & Bioelectronics , 2008, 23(12): 1781-1787
doi: 10.1016/j.bios.2008.02.014
13 Iijima S. Carbon nanotubes: past, present, and future. Physica B, Condensed Matter , 2002, 323(1-4): 1-5
doi: 10.1016/S0921-4526(02)00869-4
14 Wang D, Li Z C, Chen L W. Templated synthesis of single-walled carbon nanotube and metal nanoparticle assemblies in solution. Journal of the American Chemical Society , 2006, 128(47): 15078-15079
doi: 10.1021/ja066617j
15 Bagal-Kestwala D, Kestwal R M, Hsieh B C, Chen R L C, Cheng T J, Chiang B H. Electrochemical β(1→3)-D-glucan biosensors fabricated by immobilization of enzymes with gold nanoparticles on platinum electrode. Biosensors & Bioelectronics , 2010, 26(1): 118-125
doi: 10.1016/j.bios.2010.05.022
16 Choudhry N A, Kampouris D K, Kadara R O, Jenkinson N, Banks C E. Next generation screen printed electrochemical platforms: non-enzymatic sensing of carbohydrates using copper(II) oxide screen printed electrodes. Analytical Methods , 2009, 1(3): 183-187
doi: 10.1039/b9ay00095j
17 Avramescu A, Andreescu S, Noguer T, Bala C, Andreescu D, Marty J L. Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Analytical and Bioanalytical Chemistry , 2002, 374(1): 25-32
doi: 10.1007/s00216-002-1312-0
18 Alkasir R S J, Ganesana M, Won Y H, Stanciu L, Andreescu S. Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol A. Biosensors & Bioelectronics , 2010, 26(1): 43-49
doi: 10.1016/j.bios.2010.05.001
19 Li D W, Li Y T, Song W, Long Y T. Simultaneous determination of dihydroxybenzene isomers using disposable screen-printed electrode modified by multiwalled carbon nanotubes and gold nanoparticles. Analytical Methods , 2010, 2(7): 837-843
doi: 10.1039/c0ay00076k
20 Lee P C, Meisel D. Adsorption and surface-enhanced raman of dyes on silver and gold sols. Journal of Physical Chemistry , 1982, 86(17): 3391-3395
doi: 10.1021/j100214a025
21 Dijksma M, Boukamp B A, Kamp B, van Bennekom W P. Effect of hexacyanoferrate(II/III) on self-assembled monolayers of thioctic acid and 11-mercaptoundecanoic acid on gold. Langmuir , 2002, 18(8): 3105-3112
doi: 10.1021/la010898l
22 Dempsey E, Diamond D, Collier A. Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosensors & Bioelectronics , 2004, 20(2): 367-377
doi: 10.1016/j.bios.2004.02.007
23 Du D, Wang M H, Cai J, Qin Y, Zhang A. One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sensors and Actuators B, Chemical , 2010, 143(2): 524-529
doi: 10.1016/j.snb.2009.09.051
24 Shu F R, Wilson G S. Rotating ring-disk enzyme electrode for surface catalysis studies. Analytical Chemistry , 1976, 48(12): 1679-1686
doi: 10.1021/ac50006a014
[1] Pengyi ZHANG , Bo ZHANG , Rui SHI , . Catalytic decomposition of low level ozone with gold nanoparticles supported on activated carbon[J]. Front.Environ.Sci.Eng., 2009, 3(3): 281-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed