Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (1) : 143-150    https://doi.org/10.1007/s11783-012-0456-1
RESEARCH ARTICLE
Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia
Gefu ZHU1(), Chaoxiang LIU1, Jianzheng LI2, Nanqi REN2, Lin LIU1, Xu HUANG1
1. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; 2. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(358 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A low pH, ethanol-type fermentation process was evaluated for wastewater treatment and bio-hydrogen production from acidic beet sugar factory wastewater in a continuous stirred tank reactor (CSTR) with an effective volume of 9.6 L by anaerobic mixed cultures in this present study. After inoculating with aerobic activated sludge and operating at organic loading rate (OLR) of 12 kgCOD?m-3·d-1, HRT of 8h, and temperature of 35°C for 28 days, the CSTR achieved stable ethanol-type fermentation. When OLR was further increased to 18 kgCOD?m-3·d-1 on the 53rd day, ethanol-type fermentation dominant microflora was enhanced. The liquid fermentation products, including volatile fatty acids (VFAs) and ethanol, stabilized at 1493 mg·L-1 in the bioreactor. Effluent pH, oxidation-reduction potential (ORP), and alkalinity ranged at 4.1–4.5, -250–(-290) mV, and 230–260 mgCaCO3?L-1. The specific hydrogen production rate of anaerobic activated sludge was 0.1 L?gMLVSS-1·d-1 and the COD removal efficiency was 45%. The experimental results showed that the CSTR system had good operation stability and microbial activity, which led to high substrate conversion rate and hydrogen production ability.

Keywords fermentative hydrogen production      continuous stirred tank reactor (CSTR)      specific hydrogen production rate      beet sugar factory wastewater      ethanol-type fermentation     
Corresponding Author(s): ZHU Gefu,Email:gfzhu@iue.ac.cn   
Issue Date: 01 February 2013
 Cite this article:   
Gefu ZHU,Chaoxiang LIU,Jianzheng LI, et al. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia[J]. Front Envir Sci Eng, 2013, 7(1): 143-150.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0456-1
https://academic.hep.com.cn/fese/EN/Y2013/V7/I1/143
Fig.1  Schematic diagram of the continuous stirred-tank reactor system
Fig.1  Schematic diagram of the continuous stirred-tank reactor system
componentpercentage/%
dried materials78-85
total sugar48-58
TOC28-34
TKN0.2-2.8
P2O50.02-0.07
CaO0.15-0.8
MgO0.01-0.1
K2O2.2-4.5
SiO20.1-0.5
Al2O30.05-0.06
Fe2O30.001-0.02
ash content4-8
Tab.1  Composition of the normal molasses
Fig.2  COD and COD removal rate in the CSTR system
Fig.2  COD and COD removal rate in the CSTR system
Fig.3  Biogas and hydrogen yields in the CSTR system
Fig.3  Biogas and hydrogen yields in the CSTR system
Fig.4  the variation of soluble metabolites concentrations in the CSTR system
Fig.4  the variation of soluble metabolites concentrations in the CSTR system
Fig.5  the variation of pH, ALK and ORP in the CSTR system
Fig.5  the variation of pH, ALK and ORP in the CSTR system
Fig.6  Scanning electron microscopy of the suspended bacteria in the CSTR reactor (Magnification: × 3000)
Fig.6  Scanning electron microscopy of the suspended bacteria in the CSTR reactor (Magnification: × 3000)
Fig.7  the variation of biomass concentration (MLVSS) in the CSTR system
Fig.7  the variation of biomass concentration (MLVSS) in the CSTR system
1 Sivaramakrishna D, Sreekanth D, Himabindu V, Anjaneyulu Y. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora. Renewable Energy , 2009, 34(3): 937-940
doi: 10.1016/j.renene.2008.04.016
2 Hawkes F R, Hussy I, Kyazze G, Dinsdale R, Hawkes D L. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. International Journal of Hydrogen Energy , 2007, 32(2): 172-184
doi: 10.1016/j.ijhydene.2006.08.014
3 Manish S, Banerjee R. Comparison of biohydrogen production processes. International Journal of Hydrogen Energy , 2008, 33(1): 279-286
doi: 10.1016/j.ijhydene.2007.07.026
4 Hallenbeck P C, Benemann J R. Biological hydrogen production: fundamentals and limiting processes. International Journal of Hydrogen Energy , 2002, 27(11-12): 1185-1193
doi: 10.1016/S0360-3199(02)00131-3
5 Nath K, Das D. Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology , 2004, 65(5): 520-529
doi: 10.1007/s00253-004-1644-0 pmid:15378294
6 Okamoto M, Miyahara T, Mizuno O, Noike T. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Science and Technology , 2000, 41(3): 25-32
pmid:11381999
7 Nandi R, Sengupta S. Microbial production of hydrogen: an overview. Critical Reviews in Microbiology , 1998, 24(1): 61-84
doi: 10.1080/10408419891294181 pmid:9561824
8 Wu K J, Chang C F, Chang J S. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Process Biochemistry , 2007, 42(7): 1165-1171
doi: 10.1016/j.procbio.2007.05.012
9 Lin C Y, Lee C Y, Tseng I C, Shiao I Z. Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora. Process Biochemistry , 2006, 41(4): 915-919
doi: 10.1016/j.procbio.2005.10.010
10 Show K Y, Zhang Z P, Tay J H, Liang D T, Lee D J, Jiang W J. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor. International Journal of Hydrogen Energy , 2007, 32(18): 4744-4753
doi: 10.1016/j.ijhydene.2007.07.005
11 Khanal S K, Chen W H, Li L, Sung S. Biohydrogen production in continuous-flow reactor using mixed microbial culture. Water Environment Research , 2006, 78(2): 110-117
doi: 10.2175/106143005X89562 pmid:16566518
12 Chen W H, Chen S Y, Khanal S K, Sung S. Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy , 2006, 31(15): 2170-2178
doi: 10.1016/j.ijhydene.2006.02.020
13 Ginkel S V, Sung S, Lay J J. Biohydrogen production as a function of pH and substrate concentration. Environmental Science and Technology , 2001, 35(24): 4726-4730
doi: 10.1021/es001979r pmid:11775145
14 Jiménez A M, Borja R, Mart??n A. Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochemistry , 2003, 38(9): 1275-1284
doi: 10.1016/S0032-9592(02)00325-4
15 Farhadian M, Borghei M, Umrania V V. Treatment of beet sugar wastewater by UAFB bioprocess. Bioresource Technology , 2007, 98(16): 3080-3083
doi: 10.1016/j.biortech.2006.10.039 pmid:17391955
16 Denac M, Miguel A, Dunn I J. Modeling dynamic experiments on the anaerobic degradation of molasses wastewater. Biotechnology and Bioengineering , 1988, 31(1): 1-10
doi: 10.1002/bit.260310102 pmid:18581556
17 Güven G, Perendeci A, Tanyolac A. Electrochemical treatment of simulated beet sugar factory wastewater. Chemical Engineering Journal , 2009, 151(1-3): 149-159
doi: 10.1016/j.cej.2009.02.008
18 Ren N Q, Wang B Z, Huang J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering , 1997, 54(5): 428-433
doi: 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G pmid:18634135
19 APHA. Standard methods for the examination of water and wastewater, 20th ed., Washington, DC, USA: American Public Health Association, 1998
20 Li J Z, Li N, Zhang N, Ouyang H. Hydrogen production from organic wastewater by fermentative acidogenic activated sludge under condition of continuous flow. Journal of Chemical Industry and Engineering (China) , 2004, 55(Suppl.): 75-79 (in Chinese)
21 Ren N Q, Chen X L, Zhao D. Control of fermentation types in continuous flow acidogenic reactors: effects of pH and redox potential. Journal of Harbin Institute of Technology (New Series) , 2001, 8(2): 116-119 (in Chinese)
22 Zhang Z P, Show K Y, Tay J H, Liang D W, Lee D J, Jiang W J. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochemistry , 2006, 41(10): 2118-2123
doi: 10.1016/j.procbio.2006.05.021
23 Hwang M H, Jang N J, Hyun S H, Kim I S. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. Journal of Biotechnology , 2004, 111(3): 297-309
doi: 10.1016/j.jbiotec.2004.04.024 pmid:15246666
24 Li J Z, Li B K, Zhu G F, Ren N Q, Bo L X, He J G. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). International Journal of Hydrogen Energy , 2007, 32(15): 3274-3283
doi: 10.1016/j.ijhydene.2007.04.023
25 Khanal S K, Chen W H, Li L, Sung S. Biological hydrogen production: effect of pH and intermediate products. International Journal of Hydrogen Energy , 2004, 29(11): 1123-1131
doi: 10.1016/j.ijhydene.2003.11.002
[1] Sheng CHANG, Jianzheng LI, Feng LIU. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor[J]. Front Envir Sci Eng Chin, 2011, 5(1): 140-148.
[2] Bo WANG, Wei WAN, Jianlong WANG, . Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed