Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (1) : 1-9    https://doi.org/10.1007/s11783-012-0476-x
RESEARCH ARTICLE
Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation
Biwu CHU1, Jiming HAO1(), Junhua LI1, Hideto TAKEKAWA2, Kun WANG1, Jingkun JIANG1
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; 2. Toyota Central Research and Development Laboratory, Nagakute, Aichi 480-1192, Japan
 Download: PDF(358 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO4) and zinc sulfate (ZnSO4), on the photochemical reactions of a toluene/NOx photooxidation system in a 2 m3 smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NOx conversion and the formation of ozone and SOA. MnSO4 and ZnSO4 seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO4 and ZnSO4 seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

Keywords manganese sulfate      zinc sulfate      seed aerosols      toluene photooxidation      secondary organic aerosol     
Corresponding Author(s): HAO Jiming,Email:hjm-den@tsinghua.edu.cn   
Issue Date: 01 February 2013
 Cite this article:   
Biwu CHU,Jiming HAO,Junhua LI, et al. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation[J]. Front Envir Sci Eng, 2013, 7(1): 1-9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0476-x
https://academic.hep.com.cn/fese/EN/Y2013/V7/I1/1
Progressblack lightsexhaust pumpair inflowairflow rate/(L·min-1)chamber temperature/°Ctime/h
Flushonondry air153420
offdry air153010
offhumid air10308-9
experiment set upoffoffintroduce seed aerosolsa)3303-4
introduce hydrocarbon15
introduce NO and NO25
reaction processonoffno air in flow0306
Tab.1  Preparation procedure in a photooxidation experiment
experiment No.HC0/ppmPM0/(μm3·cm-3)NO0/ppbNOx,0-NO0/ppbHC0/NOx,0/(ppm·ppm-1)Mo/(μg·m-3)ΔHC/ppmY/%tMo/h
1.2Tol-0Zn1.170.0565810.3250.203.34.7
1.2Tol-1.5Zn1.161.5545610.5290.213.85.0
1.2Tol-3.0Zn1.163.0575710.2300.213.95.0
1.2Tol-10Zn1.189.3595710.1350.224.34.7
2.7Tol-0Zn2.700.013213310.2630.364.74.6
2.7Tol-1.5Zn2.651.61331349.9740.434.74.5
2.7Tol-10Zn2.718.613413010.2830.366.34.7
2.7Tol-18Zn2.6817.613113010.3880.396.14.9
4.3Tol-0Zn4.320.021321510.11140.555.64.3
4.3Tol-1.5Zn4.331.621521110.21360.546.94.2
4.3Tol-10Zn4.3012.121421210.11410.537.24.4
5.8Tol-0Zn5.770.028829110.01570.706.03.4
5.8Tol-1.5Zn5.871.43012929.91880.677.63.4
5.8Tol-10Zn5.969.029828610.22070.658.53.6
5.8Tol-18Zn5.9917.329129710.22200.718.34.1
Tab.2  Experimental conditions and results in toluene photooxidation for ZnSO seed aerosols: initial toluene concentration (HC), initial ZnSO seed aerosols concentration (PM), initial NO concentrations (NO and NO-NO), ratio of HC/NO, generated SOA mass (), reacted hydrocarbon (Δ), SOA yield (), and time point to determine the generated SOA mass ()
experiment No.HC0/ppmPM0/(μm3·cm-3)NO0/ppbNOx,0-NO0/ppbHC0/NOx,0/(ppm·ppm-1)Mo/(μg·m-3)ΔHC/ppmY/%tMo/h
1.2Tol-0Mn1.160.0565510.5230.183.52.3
1.2Tol-1.5Mn1.191.5545411.0290.184.22.7
1.2Tol-10Mn1.1910.6585310.7310.174.82.3
2.1Tol-0Mn2.100.01081149.5520.344.23.3
2.1Tol-1.5Mn2.141.310810310.1620.344.93.1
2.1Tol-10Mn2.0910.810510310.1640.325.33.2
3.2Tol-0Mn3.160.01651609.7800.464.73.1
3.2Tol-1.5Mn3.281.716715110.31170.437.42.7
3.2Tol-10Mn3.3711.516516210.31160.417.63.2
4.2Tol-0Mn4.150.020720710.01100.575.13.2
4.2Tol-1.5Mn4.162.120420610.11410.547.03.2
4.2Tol-10Mn4.349.620622210.11290.516.93.0
Tab.3  Experimental conditions and results in toluene photooxidation for MnSO seed aerosols: initial toluene concentration (HC), initial MnSO seed aerosols concentration (PM), initial NO concentrations (NO and NO-NO), ratio of HC/NO, generated SOA mass (), reacted hydrocarbon (Δ), SOA yield (), and time point to determine the generated SOA mass ()
Fig.1  Time variations of the concentrations of O (a), -pinene (b) and NO (c) during toluene/NO photooxidation in the presence and absence of ZnSO seed aerosols
Fig.1  Time variations of the concentrations of O (a), -pinene (b) and NO (c) during toluene/NO photooxidation in the presence and absence of ZnSO seed aerosols
Fig.2  Size distribution variations with time in a seed-free experiment and ZnSO seed aerosols introduced experiments during toluene/NO photooxidation: (a) 2.7Tol-0Zn (seed-free experiment); (b) 2.7Tol-1.5Zn; (c) 2.7Tol-10Zn; and (d) 2.7Tol-18Zn
Fig.2  Size distribution variations with time in a seed-free experiment and ZnSO seed aerosols introduced experiments during toluene/NO photooxidation: (a) 2.7Tol-0Zn (seed-free experiment); (b) 2.7Tol-1.5Zn; (c) 2.7Tol-10Zn; and (d) 2.7Tol-18Zn
Fig.3  Temporal evolutions of SOA generation from toluene/NO photooxidation with different concentrations of ZnSO seed aerosols: (a) toluene=1.2 ppm; (b) toluene=2.7 ppm; (c) toluene=4.3 ppm; and (d) toluene=5.8 ppm
Fig.3  Temporal evolutions of SOA generation from toluene/NO photooxidation with different concentrations of ZnSO seed aerosols: (a) toluene=1.2 ppm; (b) toluene=2.7 ppm; (c) toluene=4.3 ppm; and (d) toluene=5.8 ppm
Fig.4  Temporal evolutions of SOA generation from toluene/NO photooxidation with different concentrations of MnSO seed aerosols: (a) toluene=1.2 ppm; (b) toluene=2.1 ppm; (c) toluene=3.2 ppm; and (d) toluene=4.2 ppm
Fig.4  Temporal evolutions of SOA generation from toluene/NO photooxidation with different concentrations of MnSO seed aerosols: (a) toluene=1.2 ppm; (b) toluene=2.1 ppm; (c) toluene=3.2 ppm; and (d) toluene=4.2 ppm
Fig.5  SOA yield () variations as a function of generated SOA mass () from and toluene/NO photooxidation in the presence and absence of ZnSO seed aerosols (a) and MnSO seed aerosols (b)
Fig.5  SOA yield () variations as a function of generated SOA mass () from and toluene/NO photooxidation in the presence and absence of ZnSO seed aerosols (a) and MnSO seed aerosols (b)
1 He K B, Yang F M, Ma Y L, Zhang Q, Yao X, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment , 2001, 35(29): 4959-4970
doi: 10.1016/S1352-2310(01)00301-6
2 Duan F K, He K B, Ma Y L, Jia Y, Yang F, Lei Y, Tanaka S, Okuta T. Characteristics of carbonaceous aerosols in Beijing, China. Chemosphere , 2005, 60(3): 355-364
doi: 10.1016/j.chemosphere.2004.12.035 pmid:15924954
3 Calvert J G, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons. New York: Oxford University Press, 2002
4 Lewandowski M, Jaoui M, Offenberg J H, Kleindienst T E, Edney E O, Sheesley R J, Schauer J J. Primary and secondary contributions to ambient PM in the midwestern United States. Environmental Science & Technology , 2008, 42(9): 3303-3309
doi: 10.1021/es0720412 pmid:18522110
5 Volkamer R, Jimenez J L, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina L T, Worsnop D R, Molina M J. Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophysical Research Letters , 2006, 33(17): L17811
doi: 10.1029/2006GL026899 pmid:19122778
6 Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmospheric Environment , 2003, 37(24): 3413-3424
doi: 10.1016/S1352-2310(03)00359-5
7 Prisle N L, Engelhart G J, Bilde M, Donahue N M. Humidity influence on gas-particle phase partitioning of alpha-pinene+ O3 secondary organic aerosol. Geophysical Research Letters , 2010, 37(1): L01802
doi: 10.1029/2009GL041402
8 Song C, Na K S, Cocker D R 3rd. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environmental Science & Technology , 2005, 39(9): 3143-3149
doi: 10.1021/es0493244 pmid:15926564
9 Jang M S, Czoschke N M, Lee S, Kamens R M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science , 2002, 298(5594): 814-817
doi: 10.1126/science.1075798 pmid:12399587
10 Lu Z F, Hao J M, Takekawa H, Hu L, Li J. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system. Atmospheric Environment , 2009, 43(4): 897-904
doi: 10.1016/j.atmosenv.2008.10.047
11 Loranger S, Zayed J. Environmental contamination and human exposure to airborne total and respirable manganese in Montreal. Journal of the Air & Waste Management Association , 1997, 47(9): 983-989
doi: 10.1080/10473289.1997.10463954 pmid:9377217
12 Terhaar G L, Griffing M E, Brandt M, Oberding D G, Kapron M. Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products. Journal of the Air Pollution Control Association , 1975, 25(8): 858-859
doi:10.1080/00022470.1975.10470152
13 Wang Y, Li A, Zhan Y, Wei L, Li Y, Zhang G, Xie Y, Zhang J, Zhang Y, Shan Z. Speciation of elements in atmospheric particulate matter by XANES. Journal of Radioanalytical and Nuclear Chemistry , 2007, 273(1): 247-251
doi: 10.1007/s10967-007-0743-7
14 Makkonen U, Hellén H, Anttila P, Ferm M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Science of the Total Environment , 2010, 408(3): 644-651
doi: 10.1016/j.scitotenv.2009.10.050 pmid:19903567
15 Osán J, Meirer F, Groma V, T?r?k S, Ingerle D, Streli C, Pepponi G. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry. Spectrochimica Acta. Part B, Atomic Spectroscopy , 2010, 65(12): 1008-1013
doi: 10.1016/j.sab.2010.11.002
16 Wu S, Lu Z F, Hao J M, Zhao Z, Li J, Takekawa H, Minoura H, Yasuda A. Construction and characterization of an atmospheric simulation smog chamber. Advances in Atmospheric Sciences , 2007, 24(2): 250-258
doi: 10.1007/s00376-007-0250-3
17 Takekawa H, Karasawa M, Inoue M, Ogawa T, Esaki Y. Product analysis of the aerosol produced by photochemical reaction of α-pinene. Earozoru Kenkyu , 2000, 15(1): 35-42
18 Chu B, Hao J, Takekawa H, Li J, Wang K, Jiang J. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx. Atmospheric Environment , 2012, 55(1): 26-34
doi:10.1016/j.atmosenv.2012.03.006
19 Pandis S N, Harley R A, Cass G R, Seinfeld J H. Secondary organic aerosol formation and transport. Atmospheric Environment Part A-General Topics , 1992, 26(13): 2269-2282
20 Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. Gas/particle partitioning and secondary organic aerosol yields. Environmental Science & Technology , 1996, 30(8): 2580-2585
doi: 10.1021/es950943+
21 Henry F, Coeur-Tourneur C, Ledoux F, Tomas A, Menu D. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol. Atmospheric Environment , 2008, 42(13): 3035-3045
doi: 10.1016/j.atmosenv.2007.12.043
22 Verheggen B, Mozurkewich M, Caffrey P, Frick G, Hoppel W, Sullivan W. Alpha-pinene oxidation in the presence of seed aerosol: estimates of nucleation rates, growth rates, and yield. Environmental Science & Technology , 2007, 41(17): 6046-6051
doi: 10.1021/es070245c pmid:17937280
23 Lu Z F, Hao J M, Li J H, Wu S. Effect of calcium sulfate and ammonium sulfate aerosol on secondary organic aerosol formation. Acta Chimica Sinica , 2008, 66(4): 419-423
24 Kroll J H, Chan A W H, Ng N L, Flagan R C, Seinfeld J H. Reactions of semivolatile organics and their effects on secondary organic aerosol formation. Environmental Science & Technology , 2007, 41(10): 3545-3550
doi: 10.1021/es062059x pmid:17547176
25 Cao G, Jang M. Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx. Atmospheric Environment , 2007, 41(35): 7603-7613
doi: 10.1016/j.atmosenv.2007.05.034
[1] He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed