|
|
Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation |
Biwu CHU1, Jiming HAO1( ), Junhua LI1, Hideto TAKEKAWA2, Kun WANG1, Jingkun JIANG1 |
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; 2. Toyota Central Research and Development Laboratory, Nagakute, Aichi 480-1192, Japan |
|
|
Abstract Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO4) and zinc sulfate (ZnSO4), on the photochemical reactions of a toluene/NOx photooxidation system in a 2 m3 smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NOx conversion and the formation of ozone and SOA. MnSO4 and ZnSO4 seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO4 and ZnSO4 seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.
|
Keywords
manganese sulfate
zinc sulfate
seed aerosols
toluene photooxidation
secondary organic aerosol
|
Corresponding Author(s):
HAO Jiming,Email:hjm-den@tsinghua.edu.cn
|
Issue Date: 01 February 2013
|
|
1 |
He K B, Yang F M, Ma Y L, Zhang Q, Yao X, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment , 2001, 35(29): 4959-4970 doi: 10.1016/S1352-2310(01)00301-6
|
2 |
Duan F K, He K B, Ma Y L, Jia Y, Yang F, Lei Y, Tanaka S, Okuta T. Characteristics of carbonaceous aerosols in Beijing, China. Chemosphere , 2005, 60(3): 355-364 doi: 10.1016/j.chemosphere.2004.12.035 pmid:15924954
|
3 |
Calvert J G, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons. New York: Oxford University Press, 2002
|
4 |
Lewandowski M, Jaoui M, Offenberg J H, Kleindienst T E, Edney E O, Sheesley R J, Schauer J J. Primary and secondary contributions to ambient PM in the midwestern United States. Environmental Science & Technology , 2008, 42(9): 3303-3309 doi: 10.1021/es0720412 pmid:18522110
|
5 |
Volkamer R, Jimenez J L, San Martini F, Dzepina K, Zhang Q, Salcedo D, Molina L T, Worsnop D R, Molina M J. Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophysical Research Letters , 2006, 33(17): L17811 doi: 10.1029/2006GL026899 pmid:19122778
|
6 |
Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmospheric Environment , 2003, 37(24): 3413-3424 doi: 10.1016/S1352-2310(03)00359-5
|
7 |
Prisle N L, Engelhart G J, Bilde M, Donahue N M. Humidity influence on gas-particle phase partitioning of alpha-pinene+ O3 secondary organic aerosol. Geophysical Research Letters , 2010, 37(1): L01802 doi: 10.1029/2009GL041402
|
8 |
Song C, Na K S, Cocker D R 3rd. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environmental Science & Technology , 2005, 39(9): 3143-3149 doi: 10.1021/es0493244 pmid:15926564
|
9 |
Jang M S, Czoschke N M, Lee S, Kamens R M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science , 2002, 298(5594): 814-817 doi: 10.1126/science.1075798 pmid:12399587
|
10 |
Lu Z F, Hao J M, Takekawa H, Hu L, Li J. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NOx photooxidation system. Atmospheric Environment , 2009, 43(4): 897-904 doi: 10.1016/j.atmosenv.2008.10.047
|
11 |
Loranger S, Zayed J. Environmental contamination and human exposure to airborne total and respirable manganese in Montreal. Journal of the Air & Waste Management Association , 1997, 47(9): 983-989 doi: 10.1080/10473289.1997.10463954 pmid:9377217
|
12 |
Terhaar G L, Griffing M E, Brandt M, Oberding D G, Kapron M. Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products. Journal of the Air Pollution Control Association , 1975, 25(8): 858-859 doi:10.1080/00022470.1975.10470152
|
13 |
Wang Y, Li A, Zhan Y, Wei L, Li Y, Zhang G, Xie Y, Zhang J, Zhang Y, Shan Z. Speciation of elements in atmospheric particulate matter by XANES. Journal of Radioanalytical and Nuclear Chemistry , 2007, 273(1): 247-251 doi: 10.1007/s10967-007-0743-7
|
14 |
Makkonen U, Hellén H, Anttila P, Ferm M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Science of the Total Environment , 2010, 408(3): 644-651 doi: 10.1016/j.scitotenv.2009.10.050 pmid:19903567
|
15 |
Osán J, Meirer F, Groma V, T?r?k S, Ingerle D, Streli C, Pepponi G. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry. Spectrochimica Acta. Part B, Atomic Spectroscopy , 2010, 65(12): 1008-1013 doi: 10.1016/j.sab.2010.11.002
|
16 |
Wu S, Lu Z F, Hao J M, Zhao Z, Li J, Takekawa H, Minoura H, Yasuda A. Construction and characterization of an atmospheric simulation smog chamber. Advances in Atmospheric Sciences , 2007, 24(2): 250-258 doi: 10.1007/s00376-007-0250-3
|
17 |
Takekawa H, Karasawa M, Inoue M, Ogawa T, Esaki Y. Product analysis of the aerosol produced by photochemical reaction of α-pinene. Earozoru Kenkyu , 2000, 15(1): 35-42
|
18 |
Chu B, Hao J, Takekawa H, Li J, Wang K, Jiang J. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx. Atmospheric Environment , 2012, 55(1): 26-34 doi:10.1016/j.atmosenv.2012.03.006
|
19 |
Pandis S N, Harley R A, Cass G R, Seinfeld J H. Secondary organic aerosol formation and transport. Atmospheric Environment Part A-General Topics , 1992, 26(13): 2269-2282
|
20 |
Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. Gas/particle partitioning and secondary organic aerosol yields. Environmental Science & Technology , 1996, 30(8): 2580-2585 doi: 10.1021/es950943+
|
21 |
Henry F, Coeur-Tourneur C, Ledoux F, Tomas A, Menu D. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol. Atmospheric Environment , 2008, 42(13): 3035-3045 doi: 10.1016/j.atmosenv.2007.12.043
|
22 |
Verheggen B, Mozurkewich M, Caffrey P, Frick G, Hoppel W, Sullivan W. Alpha-pinene oxidation in the presence of seed aerosol: estimates of nucleation rates, growth rates, and yield. Environmental Science & Technology , 2007, 41(17): 6046-6051 doi: 10.1021/es070245c pmid:17937280
|
23 |
Lu Z F, Hao J M, Li J H, Wu S. Effect of calcium sulfate and ammonium sulfate aerosol on secondary organic aerosol formation. Acta Chimica Sinica , 2008, 66(4): 419-423
|
24 |
Kroll J H, Chan A W H, Ng N L, Flagan R C, Seinfeld J H. Reactions of semivolatile organics and their effects on secondary organic aerosol formation. Environmental Science & Technology , 2007, 41(10): 3545-3550 doi: 10.1021/es062059x pmid:17547176
|
25 |
Cao G, Jang M. Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx. Atmospheric Environment , 2007, 41(35): 7603-7613 doi: 10.1016/j.atmosenv.2007.05.034
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|