Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 255-266    https://doi.org/10.1007/s11783-013-0485-4
RESEARCH ARTICLE
Simulation of soil carbon changes due to land use change in urban areas in China
Cui HAO1, Jo SMITH2, Jiahua ZHANG3, Weiqing MENG4, Hongyuan LI5()
1. Laboratory for Remote Sensing and Climate Change Information, Chinese Academy of Meteorological Sciences, Beijing 100081, China; 2. School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; 3. Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; 4. College of Urban and Environmental Science, Tianjin Normal University, Tianjin 300387, China; 5. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
 Download: PDF(661 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Land use change can have a strong impact on soil carbon dynamics and carbon stocks in urban areas. Due to rapid urbanization, large areas of land have been paved, and other areas have undergone rapid land use change. Evaluation of the impact of urbanization on carbon dynamics and carbon stock (30 cm) has become an issue of urgent concern. The soil carbon dynamics, due to rapid land use change in Tianjin Binhai New Area of China, have been simulated in this paper using the RothC model. Because this area is saline, a modified version of RothC that includes a salt rate modifier provided more accurate simulations than the original model. The conversion to urban green land was not accurately simulated by either of the models because of the undefined changes in soil and plant conditions. According to the model, changes of arable to grassland resulted in a decline in soil carbon stocks, and changes of grassland to forest and grassland to arable resulted in increased soil carbon stocks in this area. Across the whole area simulated, the total carbon stocks in 2010 had decreased due to land use change by 6.5% from the 1979 value. By 2050, a further decrease of 21.9% is expected according to the 2050 plan for land use and the continuing losses from the soils due to previous land use changes.

Keywords land use change      soil carbon      RothC      urban area     
Corresponding Author(s): LI Hongyuan,Email:hongyuan@nankai.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Jo SMITH,Jiahua ZHANG,Weiqing MENG, et al. Simulation of soil carbon changes due to land use change in urban areas in China[J]. Front Envir Sci Eng, 0, (): 255-266.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0485-4
https://academic.hep.com.cn/fese/EN/Y0/V/I/255
Fig.1  Location of Tianjin Binhai New Area (data source: national fundamental geographic database)
land use soil typeclay /%EC1:5a) /(ds·m-1)ECe /(ds·m-1)SOC /(t·ha-1)manure /(t·ha-1)pH
grasslandL29.813.5441.4751.900.009.05
grasslandCL35.993.9241.2548.960.008.78
grasslandCC55.406.3646.6239.900.008.79
arableL23.642.0426.5974.803.038.50
arableCL33.002.6329.1571.703.038.64
arableCC59.102.8919.6259.003.038.92
urban greenCL30.712.2125.4991.702.008.17
forestL29.712.7231.9275.952.008.51
forestCL35.042.7229.1072.792.008.64
bare landC73.3710.2149.5220.380.009.04
beachSC48.787.9866.5937.420.008.63
urban landC, CL, L---5..41b)0.00-
Tab.1  Land use and soil data of Tianjin Binhai New Area
land use changetextureabbreviationchanging time
grassland to forestclay loamGFCLF20
grassland to forestloamGFLOF20
arable to grasslandclay loamAGCLG11,G17,G21
bare land to arableclayBACCA12,A21,A26
grassland to arableloamGALOA6, A10,A12,A17,A20,A27
grassland to arable clay loamGACLA5,A12,A15,A21,A27
grassland to arableclayGACCA15,A20
grassland to urban green landclay loamGUGCU9,U13,U14,U27
arable to urban land-AGCCU6,U10,U11
bare land to urban land-BUCCU5,U6,U10
grassland to urban land-GUCCU6,U11
Tab.2  Land use changes in Tianjin Binhai New Area
Fig.2  Modelled and measured (mean±95% confidence interval) SOC in the 30 cm layers from 5 land use changes, using RothC version 26.3 (dashed lines) and RothC modified as described by Setia et al [17,25] (solid lines). (a) GFCL; (b) GFLO; (c) AGCL; (d) BACC; (e) GALO; (f) GACL; (g) GUGC; (h) GACC
land use changesymbolsstatistical test (model 1)statistical test (model 2)
LOFITErLOFITErn
arable to grassland (clay loam)AGCL8780.764700.763
F=1.98E95%=36t=1.16F=0.61E95%=41t=1.17
F5%=5.32t5%=2.71F5%=3.05t5%=12.71
bare land to arable (clay)BACC7030.9656-30.963
F=1.44E95%=42T=3.48F=1.06E95%=42t=3.50
F5%=2.54t5%=12.71F5%=2.54t5%=12.71
grassland to arable (loam)GALO2133.760.831262.220.836
F=1.88E95%=12t=3.00F=1.09E95%=12t=2.97
F5%=1.86t5%=2.78F5%=1.86t5%=2.78
grassland to arable (clay loam)GACL39260.8818040.885
F=3.77E95%=28t=3.22F=1.71E95%=28t=3.21
F5%=2.07t5%=3.18F5%=2.07t5%=3.18
grassland to urban green land (clay loam)GUGC6883210.796218200.724
F=80.52E95%=10t=1.80F=72.74E95%=10t=1.45
F5%=2.27t5%=4.30F=2.27t5%=4.30
Tab.3  Quantitative evaluation of measured data and model output of model 1 and 2
Fig.3  Areas of land use changes in Tianjin Binhai New Area from 1979 to 2050
Fig.4  C dynamic of Tianjin Binhai New Area from 1980 to 2050
Fig.5  SOC changes due to land use change from 1980 to 2050
Fig.6  CO changes due to land use change
Fig.7  Average decomposition rate of the two models, AGCL is arable to grassland on clay loam, BACC is bare to arable on clay, GALO is grassland to arable on loam, GACL is grassland to arable on clay loam, GACC is grassland to arable on clay, GFLO is grassland to forest on loam, GFCL is grassland to forest on clay loam
Fig.8  Changes of SOC distribution of Tianjin Binhai New Area from 1979 to 2050
Fig.9  Changes of CO distribution of Tianjin Binhai New Area from 1979 to 2050
1 Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science , 1996, 47(2): 151-163
doi: 10.1111/j.1365-2389.1996.tb01386.x
2 Houghton R A, Skole D L. Carbon. In: Turner B L, Clark W C, Kates R W, Richards J F, Mathews J T, Meyer W B, editors. The Earth as Transformed by Human Action . New York: Cambridge University Press, 1990
3 Smith P. Soils as carbon sinks-the global context. Soil Use and Management , 2004, 20(2): 212-218
doi: 10.1079/SUM2004233
4 Smith P. Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems , 2008, 81(2): 169-178
doi: 10.1007/s10705-007-9138-y
5 Watson R T, Noble I R, Bolin B, Ravindramath N H, Verardo D J, Dokken D J. Land Use, Land-Use Change, and Forestry (A Special Report of the IPCC). Cambridge: Cambridge University Press, 2000
6 IPCC. Climate Change 2001: Working Group I: the Scientific Basis. New York: Cambridge University Press, 2001
7 Houghton R A. Why are estimates of the terrestrial carbon balance so different? Global Change Biology , 2003, 9(4): 500-509
doi: 10.1046/j.1365-2486.2003.00620.x
8 Pouyat R, Groffman P, Yesilonis I, Hernandez L. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution , 2002, 116(Suppl 1): S107-S118
doi: 10.1016/S0269-7491(01)00263-9 pmid:11833898
9 Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming. Nature , 1991, 351(6324): 304-306
doi: 10.1038/351304a0
10 Parton W J, Scurlock J M O, Ojima D S, Gilmanov T G, Scholes R J, Schimel D S, Kirchner T, Menaut J C, Seastedt T, Garcia Moya E, Kamnalrut A, Kinyamario J I. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles , 1993, 7(4): 785-809
doi: 10.1029/93GB02042
11 Falloon P, Smith P, Szabó J, Pásztor L. Comparison of approaches for estimating carbon sequestration at the regional scale. Soil Use and Management , 2002, 18(3): 164-174
doi: 10.1111/j.1475-2743.2002.tb00236.x
12 Shirato Y, Yokozawa M. Applying the Rothamsted carbon model for long-term experiments on Japanese paddy soils and modifying it by simple tuning of the decomposition rate. Soil Science & Plant Nutrition , 2005, 51(3): 405-415
doi: 10.1111/j.1747-0765.2005.tb00046.x
13 Gupta R, Abrol I. Salt-affected soils: their reclamation and management for crop production. Advances in Soil Science , 1990, 15(11): 223-288
doi: 10.1007/978-1-4612-3322-0_7
14 Szabolcs I. Soils and salinaizatio. In: Pessarakli M, ed. Handbook of Plant and Crop Stress . New York: Marcel Dekker, 1993
15 National Soil Survey Office. Chinese Soil Genus Records (Vol. 3). Beijing: China Agriculture Press, 1995
16 Powlson D S, SmithP, Smith J U. Evaluation of soil organic matter models using existing long-term datasets. In Coleman K, Jenkinson DS, eds. RothC-26.3-A Model for the Turnover of Carbon in Soil. Michigan: Springer-Verlag , 1996
17 Setia R, Smith P, Marschner P, Baldock J, Chittleborough D, Smith J. Introducing a decomposition rate modifier in the Rothamsted carbon model to predict soil organic carbon stocks in saline soils. Environmental Science & Technology , 2011, 45(15): 6396-6403
doi: 10.1021/es200515d pmid:21671665
18 FAO. FAO-Unesco Soil Map of the World. Vol 1. Legend . Paris: Unesco, 1974
19 Tang T G. The Coastal Halophilous Plants of Tianjin. Beijing: China Forestry Press, 2007 (in Chinese)
20 Xu N, Gao D M. Wetlands of Tianjin. Tianjin: Tianjin Scientific and Technology Press, 2008 (in Chinese)
21 Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter. In: Page A L, ed. Methods of Soil Analysis . Part 2. 2nd ed. Madison: ASA and SSSA, 1982
22 Falloon P, Smith P, Coleman K, Marshal S. Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biology & Biochemistry , 1998, 30(8-9): 1207-1211
doi: 10.1016/S0038-0717(97)00256-3
23 Nieto O M, Castro J, Fernández E, Smith P. Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use and Management , 2010, 26(2): 118-125
doi: 10.1111/j.1475-2743.2010.00265.x
24 Ludwig B, Hu K, Niu L, Liu X J. Modelling the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted carbon model—initialization and calculation of C inputs. Plant and Soil , 2010, 332(1-2): 193-206
doi: 10.1007/s11104-010-0285-6
25 Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, Smith J. Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry , 2011, 43(9): 1908-1916
doi: 10.1016/j.soilbio.2011.05.013
26 Smith J, Smith P, Addiscott T. Quantitative methods to evaluate and compare soil organic matter (SOM) models. In: Powlson DS, Smith P, Smith JU, eds. Evaluation of Soil Organic Matter Models—Using Existing Long-Term Datasets . Heidelberg: Springer, 1996
27 Smith P, Smith J U, Powlson D S, McGill W B, Arah J R M, Chertov O G, Coleman K, Franko U, Frolking S, Jenkinson D S, Jensen L S, Kelly R H, Klein-Gunnewiek H, Komarov A S, Li C, Molina J A E, Mueller T, Parton W J, Thornley J H M, Whitmore A P. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma , 1997, 81(1-2): 153-225
doi: 10.1016/S0016-7061(97)00087-6
28 Smith J, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones R J A, Montanarella L, Rounsevell M D A, Reginster I, Ewert F. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology , 2005, 11(12): 2141-2152
doi: 10.1111/j.1365-2486.2005.001075.x
29 Liu L M, Shi F C, Yu J. Study on the estimation and application of wild plants in seashore area of Tianjin. Chinese Landscape Architecture , 2011, 12(10): 70-73 (in Chinese)
30 Mann L K. Changes in soil carbon storage after cultivation. Soil Science , 1986, 142(5): 279-288
doi: 10.1097/00010694-198611000-00006
31 Davidson E, Ackerman I. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry , 1993, 20(3): 161-193
doi: 10.1007/BF00000786
32 Smith P, Powlson D S, Smith J U, Falloon P, Coleman K. Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology , 2000, 6(5): 525-539
doi: 10.1046/j.1365-2486.2000.00331.x
33 Lal R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil & Tillage Research , 1997, 43(1-2): 81-107
doi: 10.1016/S0167-1987(97)00036-6
34 Liu D L, Chan K Y, Conyers M K. Simulation of soil organic carbon under different tillage and stubble management practices using the Rothamsted carbon model. Soil & Tillage Research , 2009, 104(1): 65-73
doi: 10.1016/j.still.2008.12.011
[1] Jiutan Liu, Kexin Lou, Zongjun Gao, Menghan Tan. Hydrochemical insights on the signatures and genesis of water resources in a high-altitude city on the Qinghai-Xizang Plateau, South-west China[J]. Front. Environ. Sci. Eng., 2024, 18(7): 88-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed