Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 616-624    https://doi.org/10.1007/s11783-013-0505-4
RESEARCH ARTICLE
Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate- accumulating organisms linked to phosphorus removal and N2O production
Gang GUO1, Yayi WANG1(), Chong WANG1, Hong WANG1, Mianli PAN2, Shaowei CHEN1
1. State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China
 Download: PDF(498 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The short-term effect of anaerobic reaction time (AnRT) (i.e., 90, 120 and 150 min) on the denitrifying phosphorus (P) removal performance and N2O production was examined using a denitrifying enhanced biologic phosphorus removal (EBPR) sludge acclimatized with mixed acetate (HAc) and propionate (Pro) (in the molar ratio 3∶1) as carbon sources. The results showed that when the AnRT was prolonged from 90 to 150 min, the anaerobic polyhydroxyalkanoate (PHA) synthesis was decreased by 15.3%. Moreover, the ineffective PHA consumption occurred in anaerobic phases and contributed to an increased NO2--N accumulation and higher free nitrous acid (FNA) concentrations (≥0.001–0.0011 mg HNO2-N/L) in the subsequent anoxic phases, causing a severe inhibition on anoxic P-uptake and denitrification. Accordingly, the total nitrogen (TN) and total phosphorus (TP) removal efficiencies dropped by approximately 6.3% and 85.5%, respectively; and the ratio of anoxic N2O-N production to TN removal increased by approximately 3.8%. The fluorescence in situ hybridization (FISH) analysis revealed that the sludge was mainly dominated by Accumulibacter (62.0% (SEmean = 1.5%)). In conclusion, the short-term excessive anaerobic reaction time negatively impacted denitrifying P removal performance and stimulated more N2O production, and its effect on P removal was more obvious than that on nitrogen removal.

Keywords Denitrifying phosphorus removal      anaerobic reaction time      nitrous oxide      polyhydroxyalkanoate      free nitrous acid      fluorescence in-situ hybridization     
Corresponding Author(s): WANG Yayi,Email:yayi.wang@tongji.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Gang GUO,Yayi WANG,Chong WANG, et al. Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate- accumulating organisms linked to phosphorus removal and N2O production[J]. Front Envir Sci Eng, 2013, 7(4): 616-624.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0505-4
https://academic.hep.com.cn/fese/EN/Y2013/V7/I4/616
Fig.1  Schematic diagram of the batch experimental system and the control equipment
Fig.2  Variations in the N, P, NO, VFAs, glycogen and PHA in one cycle in the parent SBR
itemvalues
MLSS/(mg·L–1)4296±40
MLVSS/(mg·L–1)2835±32
anoxic P removal efficiency/% a74.3
TP removal efficiency /%b99
TN removal efficiency/% c82
ratio of anoxic N2O-N production to TN removal/%d0.6
Tab.1  The N and P removal and NO production in one cycle in the parent SBR
studycarbon sourceP/VFAaGly/VFAbPHA/VFAbPHB/VFAbPHV/VFAbPH2MV/VFAb
this study
parent SBRHAc/Pro0.170.411.100.610.490
run 1 (DPAO)HAc/Pro0.170.361.080.590.490
run 2 (DPAO)HAc/Pro0.160.410.990.520.470
run 3 (DPAO)HAc/Pro0.140.420.910.490.400
DPAO metabolic models
Kuba et al. [23] HAc0.360.501.331.3300
Experimental studies DPAO
Carvalho et al. [24]HAc0.160.501.371.100.270
Carvalho et al. [24]Pro0.320.231.440.960.460
Wang et al. [10]HAc0.070.540.860.620.240
Zeng et al. [3]HAc0.350.641.481.350.130
experimental studies DGAO
Zeng et al. [25]HAc01.151.871.400.470
Tab.2  Comparison of the anaerobic carbon transformations, P release, biomass composition with literature studies and metabolic model predictions, with acetate and propionate as carbon sources
Fig.3  FISH images from the parent SBR system. (a) shows Red– (targeted by Cy3-PAOmix probes); (b) Green– (targeted by Cy5-GAOmix probes); (C) Yellow– (Cy5-DFmix probes). All bacteria are shown in blue–(targeted by FITC-EUBmix probes) (Bar= 10 μm).
Fig.4  Variations in the N, P, NO, VFAs, glycogen and PHA during one cycle in batch reactors (a, d, g: Run 1; b, e, h: Run 2; c, f, i: Run 3)
itemrun 1run 2run 3
AnRT/min90120150
MLSS / (mg·L–1)356934033394
MLVSS /(mg·L–1)237123052320
ratio of anoxic N2O-N production to TN removal/%141617
TN removal efficiency/%686562
TP removal efficiency/%-8-83-93
Tab.3  Comparison of the N and P removals and NO production in batch experiments
1 Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal cod requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research , 1996, 30(7): 1702–1710
doi: 10.1016/0043-1354(96)00050-4
2 Osada T, Kuroda K, Yonaga M. Reducing nitrous oxide gas emissions from fill-and-draw type activated sludge process. Water Research , 1995, 29(6): 1607–1608
doi: 10.1016/0043-1354(94)00246-4
3 Zeng R J, Lemaire R, Yuan Z, Keller J. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering , 2003, 84(2): 170–178
doi: 10.1002/bit.10744 pmid:12966573
4 Kampschreur M J, van der Star W R L, Wielders H A, Mulder J W, Jetten M S M, van Loosdrecht M C M. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research , 2008, 42(3): 812–826
doi: 10.1016/j.watres.2007.08.022 pmid:17920100
5 IPCC. Climate Change: The Scientific Basis. Cambridge: Cambridge University, 2001
6 Barnard J L, Fothergill S. Secondary Phosphorus Release in Biological Phosphorus Removal Systems. Proceedings of the 71st Annual Water Environment Federation Technical Exposition and Conference; Orlando, Florida, Oct 3-7 ; Water Environment Federation: Alexandria, Virginia, 1998
7 Coats E R, Watkins D L, Brinkman C K, Loge F J. Effect of anaerobic HRT on biological phosphorus removal and the enrichment of phosphorus accumulating organisms. Water Environ Res , 2011, 83(5): 461–469
doi: 10.2175/106143010X12851009156402 pmid:21657197
8 Barnard J L, Abraham K. Key features of successful BNR operation. Water Science and Technology , 2006, 53(12): 1–9
doi: 10.2166/wst.2006.400 pmid:16889235
9 Lopez C, Pons M N, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal. Water Research , 2006, 40(8): 1519–1530
doi: 10.1016/j.watres.2006.01.040 pmid:16631226
10 Wang Y Y, Geng J J, Ren Z J, He W T, Xing M Y, Wu M, Chen S W. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production. Bioresource Technology , 2011, 102(10): 5674–5684
doi: 10.1016/j.biortech.2011.02.080 pmid:21441023
11 Kuba T, Smolders G, Vanloosdrecht M C M, Heijnen J J. Biological phosphorus removal from waste-water by anaerobic-anoxic sequencing batch reactor. Environmental Science and Technology , 1993, 27(5-6): 241–252
12 Pijuan M, Ye L, Yuan Z G. Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms. Water Research , 2010, 44(20): 6063–6072
doi: 10.1016/j.watres.2010.07.075 pmid:20709350
13 Zhu X Y, Chen Y G. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environmental Science and Technology , 2011, 45(6): 2137–2143
doi: 10.1021/es102900h pmid:21322643
14 Chinese SEPA. Water and Wastewater Monitoring Methods. 4th ed. Beijing: Chinese Environmental Science Publishing House, 2002 (in Chinese)
15 Ma J, Yang Q, Wang S Y, Wang L, Takigawa A, Peng Y Z. Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge. Journal of Hazardous Materials , 2010, 175(1-3): 518–523
doi: 10.1016/j.jhazmat.2009.10.036 pmid:19910113
16 Jenkins D, Richard M G, Daigger G T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming and other Solids Separation Problems. 2nd ed. Colorado: Lewis Publishers, 2003
17 Oehmen A, Keller-Lehmann B, Zeng R J, Yuan Z G, Keller J. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography. A , 2005, 1070(1-2): 131–136
doi: 10.1016/j.chroma.2005.02.020 pmid:15861796
18 Amann R I. Partial and complete 16S rDNA sequences, their use in generation of 16S rDNA phylogenetic trees and their implications in molecular ecology studies. In: Akkermans, A D L, van Elsas, J D, de Bruijn F J, eds. Molecular Microbial Ecology Manual , vol.3.3.6. Holland: Kluwer Academic Publications Dordrecht , 1995, 1–15
19 Daims H, Brühl A, Amann R, Schleifer K H, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology , 1999, 22(3): 434–444
doi: 10.1016/S0723-2020(99)80053-8 pmid:10553296
20 Crocetti G R, Hugenholtz P, Bond P L, Schuler A, Keller J, Jenkins D, Blackall L L. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Applied Microbiology and Biotechnology , 2000, 66(3): 1175–1182
doi: 10.1128/AEM.66.3.1175-1182.2000 pmid:10698788
21 Crocetti G R, Banfield J F, Keller J, Bond P L, Blackall L L. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology (Reading, England) , 2002, 148(Pt 11): 3353–3364
pmid:12427927
22 Kong Y H, Ong S L, Ng W J, Liu W T. Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes. Environmental Microbiology , 2002, 4(11): 753–757
doi: 10.1046/j.1462-2920.2002.00357.x pmid:12460283
23 Kuba T, Murnleitner E, van Loosdrecht M C M, Heijnen J J. A metabolic model for biological phosphorus removal by denitrifying organisms. Biotechnology and Bioengineering , 1996, 52(6): 685–695
doi: 10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.3.CO;2-M pmid:18629947
24 Carvalho G, Lemos P C, Oehmen A, Reis M A M. Denitrifying phosphorus removal: linking the process performance with the microbial community structure. Water Research , 2007, 41(19): 4383–4396
doi: 10.1016/j.watres.2007.06.065 pmid:17669460
25 Zeng R J, Yuan Z, Keller J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnology and Bioengineering , 2003, 81(4): 397–404
doi: 10.1002/bit.10484 pmid:12491525
26 Kong Y H, Beer M, Rees G N, Seviour R J. Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios. Microbiology (Reading, England) , 2002, 148(Pt 8): 2299–2307
pmid:12177324
27 Lopez-Vazquez C M, Oehmen A, Hooijmans C M, Brdjanovic D, Gijzen H J, Yuan Z G, van Loosdrecht M C M. Modeling the PAO-GAO competition: effects of carbon source, pH and temperature. Water Research , 2009, 43(2): 450–462
doi: 10.1016/j.watres.2008.10.032 pmid:19022471
28 Lu H B, Keller J, Yuan Z G. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Water Research , 2007, 41(20): 4646–4656
doi: 10.1016/j.watres.2007.06.046 pmid:17658580
29 Smolders G J F, van der Meij J, van Loosdrecht M C M, Heijnen J J. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnology and Bioengineering , 1994, 43(6): 461–470
doi: 10.1002/bit.260430605 pmid:18615742
30 Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng W J. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Research , 2011, 45(15): 4672–4682
doi: 10.1016/j.watres.2011.06.025 pmid:21762944
31 Yang Q, Liu X H, Peng C Y, Wang S Y, Sun H W, Peng Y Z. N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method. Environmental Science and Technology , 2009, 43(24): 9400–9406
doi: 10.1021/es9019113 pmid:20000535
32 Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, van Loosdrecht M C M. Nitrous oxide emission during wastewater treatment. Water Research , 2009, 43(17): 4093–4103
doi: 10.1016/j.watres.2009.03.001 pmid:19666183
[1] Zhiqiang Chen, Lizhi Zhao, Ye Ji, Qinxue Wen, Long Huang. Reconsideration on the effect of nitrogen on mixed culture polyhydroxyalkanoate production toward high organic loading enrichment history[J]. Front. Environ. Sci. Eng., 2019, 13(4): 54-.
[2] Boran Wu, Xiaoli Chai, Youcai Zhao, Xiaohu Dai. Designing an in situ remediation strategy for polluted surface water bodies through the specific regulation of microbial community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 4-.
[3] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[4] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[5] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[6] Qiang He, Yinying Zhu, Guo Li, Leilei Fan, Hainan Ai, Xiaoliu Huangfu, Hong Li. Impact of dissolved oxygen on the production of nitrous oxide in biological aerated filters[J]. Front. Environ. Sci. Eng., 2017, 11(6): 16-.
[7] Takashi Osada, Makoto Shiraishi, Teruaki Hasegawa, Hirofumi Kawahara. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities[J]. Front. Environ. Sci. Eng., 2017, 11(3): 10-.
[8] Jiuxiao Hao, Xiujin Wang, Hui Wang. Investigation of polyhydroxyalkanoates (PHAs) biosynthesis from mixed culture enriched by valerate-dominant hydrolysate[J]. Front. Environ. Sci. Eng., 2017, 11(1): 5-.
[9] Lei SHEN,Yuntao GUAN,Guangxue WU,Xinmin ZHAN. N2O emission from a sequencing batch reactor for biological N and P removal from wastewater[J]. Front.Environ.Sci.Eng., 2014, 8(5): 776-783.
[10] Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG. Practical consideration for design and optimization of the step feed process[J]. Front Envir Sci Eng, 2013, 7(1): 135-142.
[11] Jianhua WANG, Yongzhen PENG, Yongzhi CHEN. Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(3): 474-480.
[12] Hongjing LI, Yinguang CHEN. Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems[J]. Front Envir Sci Eng Chin, 2011, 5(2): 283-290.
[13] Hongjing LI, Xiurong CHEN, Yinguang CHEN. Effect of the addition of organic carbon sources on nitrous oxide emission in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactors[J]. Front Envir Sci Eng Chin, 2010, 4(4): 490-499.
[14] Chaoxiang LIU, Kaiqin XU, Ryuhei INAMORI, Yuhei INAMORI, Yoshitaka EBIE, Jie LIAO, . Pilot-scale studies of domestic wastewater treatment by typical constructed wetlands and their greenhouse gas emissions[J]. Front.Environ.Sci.Eng., 2009, 3(4): 477-482.
[15] Juan WU, Jian ZHANG, Wenlin JIA, Huijun XIE, Bo ZHANG. Relationships of nitrous oxide fluxes with water quality parameters in free water surface constructed wetlands[J]. Front Envir Sci Eng Chin, 2009, 3(2): 241-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed