Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (4) : 7    https://doi.org/10.1007/s11783-016-0846-x
RESEARCH ARTICLE
Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR
Junqin PANG1,Masami MATSUDA1,Masashi KURODA1,Daisuke INOUE1,Kazunari SEI1,Kei NISHIDA2,Michihiko IKE1,*()
1. Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
2. International Research Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
 Download: PDF(722 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nitrogen-cycling microbial communities in municipal WWTPs were characterized.

Numbers of amoA, nirK and nirS genes were quantified by MPN-PCR.

Diversity of whole nitrogen-cycling communities was analyzed with DNA microarray.

CAS process retained diverse nitrogen cycling populations.

Specific, limited populations may be dominated in nitrogen removal processes.

To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study characterized the quantity and diversity of nitrogen cycling genes in various processes of municipal WWTPs by employing two molecular-based methods:most probable number-polymerase chain reaction (MPN-PCR) and DNA microarray. MPN-PCR analysis revealed that gene quantities were not statistically different among processes, suggesting that conventional activated sludge processes (CAS) are similar to nitrogen removal processes in their ability to retain an adequate population of nitrogen cycling microorganisms. Furthermore, most processes in the WWTPs that were researched shared a pattern:the nirS and the bacterial amoA genes were more abundant than the nirK and archaeal amoA genes, respectively. DNA microarray analysis revealed that several kinds of nitrification and denitrification genes were detected in both CAS and anaerobic-oxic processes (AO), whereas limited genes were detected in nitrogen removal processes. Results of this study suggest that CAS maintains a diverse community of nitrogen cycling microorganisms; moreover, the microbial communities in nitrogen removal processes may be specific.

Keywords DNA microarray analysis      Nitrogen cycling functional genes      Most probable number-polymerase chain reaction (MPN-PCR)      Wastewater treatment plants (WWTPs)     
PACS:     
Fund: 
Corresponding Author(s): Michihiko IKE   
Online First Date: 17 May 2016    Issue Date: 03 June 2016
 Cite this article:   
Junqin PANG,Masami MATSUDA,Masashi KURODA, et al. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR[J]. Front. Environ. Sci. Eng., 2016, 10(4): 7.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0846-x
https://academic.hep.com.cn/fese/EN/Y2016/V10/I4/7
Fig.1  Nitrogen cycle and its relevant functional genes
influent bioreactor removal ratioa)
Temp./°C pH DOC/(mg?L1) T-N/(mg?L1) NH4-N/(mg?L1) Temp./°C pH heterotrophicbacteria(CFUb)/mL) MLSS/(mg?L1) DOC/(mg?L1) T-N/(mg?L1) NH4-N/(mg?L1) NO3-N/(mg?L1) DOC NH4-N T-N
A-CAS 28.7 7.2 17.2 30.4 18.9 29.4 7.0 2.1 × 107 620 5.5 13.7 11.6 0.6 68 38 55
A-A2O 28.2 7.2 12.2 30.4 22.4 28.9 6.4 2.1 × 107 1240 3.0 6.3 0.1 4.2 76 99 79
A-SFM 28.1 7.2 21.0 32.8 18.6 28.7 6.4 2.5 × 107 2200 4.9 5.0 0.59 1.9 76 97 85
B-CAS 30.0 7.2 33.2 28.4 21.9 30.4 7.2 2.0 × 107 1126 4.6 16.8 12.8 0 86 42 41
C-AO 29.0 7.4 23.8 25.1 17.0 29.5 6.7 2.6 × 107 2340 3.9 1.8 1.1 1.6 84 94 93
D-CAS 28.0 7.3 25.9 22.1 24.0 28.5 6.6 3.9 × 107 1293 2.8 3.3 1.4 2.1 89 94 85
D-FCN 28.7 7.2 26.3 19.0 19.6 28.7 6.8 3.7 × 107 2253 3.7 0.8 1.2 1.7 86 95 96
Tab.1  Water quality, activated sludge characteristics, and wastewater treatment performance of different WWTPs
influent bioreactor removal ratio
Temp. pH DOC T-N NH4-N Temp. pH heterotrophicbacteria MLSS DOC T-N NH4-N NO3-N DOC NH4-N T-N
BacterialamoA 0.65(0.112) −0.25(0.594) 0.65(0.116) −0.13(0.775) 0.12(0.799) 0.59(0.167) 0.92(0.003) −0.05(0.919) −0.48(0.273) 0.50(0.253) 0.68(0.090) 0.87(0.010) −0.89(0.007) 0.12(0.805) −0.85(0.016) −0.72(0.068)
ArchealamoA −0.05(0.913) 0.12(0.799) −0.18(0.703) −0.17(0.721) −0.31(0.505) −0.02(0.960) 0.38(0.400) 0.10(0.825) −0.37(0.417) 0.38(0.400) 0.12(0.796) 0.37(0.418) −0.38(0.401) −0.40(0.378) −0.45(0.316) −0.11(0.814)
nirK 0.86(0.013) −0.24(0.600) 0.58(0.173) 0.11(0.820) 0.33(0.469) 0.86(0.014) 0.75(0.051) −0.43(0.335) −0.44(0.329) 0.19(0.679) 0.77(0.043) 0.75(0.054) −0.53(0.224) 0.25(0.588) −0.68(0.095) −0.81(0.027)
nirS 0.65(0.114) 0.01(0.979) 0.84(0.018) −0.68(0.094) 0.16(0.727) 0.37(0.420) 0.58(0.170) 0.35(0.437) 0.22(0.633) −0.18(0.699) 0.02(0.963) 0.21(0.646) −0.43(0.335) 0.76(0.045) −0.13(0.774) −0.09(0.854)
Tab.2  Correlation coefficients between abundance of nitrogen-cycling functional genes and water quality, activated sludge characteristics, and wastewater treatment performance of processes.
Fig.2  MPN-PCR analysis to determine the abundance of eubacterial 16S rRNA and nitrogen cycling functional gene copies (bacterial amoA, archaeal amoA, nirK, and nirS) in activated sludge samples. (a) Quantities of gene copies in the samples. (b) Proportions of functional genes to eubacterial 16S rRNA gene. Error bar shows a 95% confidence interval
Fig.3  Quantity of gene probes detected in A-CAS (a), A-A2O (b), A-SFM (c), B-CAS (d), C-AO (e), D-CAS (f), and D-FCN (g) using DNA microarray analyses
Fig.4  PCA of nitrogen cycling functional gene composition obtained in microarray analysis in treatment processes

(a) Scatter diagram based on amo composition; (b) Scatter diagram based on the composition of denitrification genes

Fig.5  Percentage of positive probes for functional genes in nitrogen cycling in A-CAS, B-CAS, and D-CAS
1 Smith V H, Tilman G D, Nekola J C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 1999, 100(1-3): 179–196
https://doi.org/10.1016/S0269-7491(99)00091-3
2 Ahn Y H. Sustainable nitrogen elimination biotechnologies: a review. Process Biochemistry, 2006, 41(8): 1709–1721
https://doi.org/10.1016/j.procbio.2006.03.033
3 Richardson D J, Watmough N J. Inorganic nitrogen metabolism in bacteria. Current Opinion in Chemical Biology, 1999, 3(2): 207–219
https://doi.org/10.1016/S1367-5931(99)80034-9
4 Zhu G B, Peng Y Z, Li B K, Guo J H, Yang Q, Wang S Y. Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology, 2008, 192: 159–195
https://doi.org/10.1007/978-0-387-71724-1_5
5 Song B, Tobias C R. Molecular and stable isotope methods to detect and measure anaerobic ammonium oxidation (anammox) in aquatic ecosystems. Methods in Enzymology, 2011, 496: 63–89
https://doi.org/10.1016/B978-0-12-386489-5.00003-8
6 Kampschreur M J, Temmink H, Kleerebezem R, Jetten M S M, van Loosdrecht C M. Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43(17): 4093–4103
https://doi.org/10.1016/j.watres.2009.03.001
7 Soda S, Arai T, Inoue D, Ishigaki T, Ike M, Yamada M. Statistical analysis of global warming potential, eutrophication potential, and sludge production of wastewater treatment in Japan. Journal of Sustainable Energy and Environment, 2013, 4(1): 33–40
8 Amann R I, Ludwing W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59(1): 143–169
9 Prosser J I, Embley T M. Cultivation-based and molecular approaches to characterization of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek, 2002, 81(1): 165–179
https://doi.org/10.1023/A:1020598114104
10 Smith C J, Osborn A M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 2009, 67(1): 6–20
https://doi.org/10.1111/j.1574-6941.2008.00629.x
11 He Z, Deng Y, Zhou J. Development of functional gene microarrays for microbial community analysis. Current Opinion in Biotechnology, 2012, 23(1): 49–55
https://doi.org/10.1016/j.copbio.2011.11.001
12 Inoue D, Pang J, Matsuda M, Sei K, Nishida K, Ike M. Development of a whole community genome amplification-assisted DNA microarray method to detect functional genes involved in the nitrogen cycle. World Journal of Microbiology & Biotechnology, 2014, 30(11): 2907–2915
https://doi.org/10.1007/s11274-014-1718-9
13 Hashimoto K, Matsuda M, Inoue D, Ike M. Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process. Journal of Bioscience and Bioengineering, 2014, 118(1): 64–71
https://doi.org/10.1016/j.jbiosc.2013.12.008
14 Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiology Ecology, 2000, 32(2): 129–141
https://doi.org/10.1111/j.1574-6941.2000.tb00707.x
15 Rotthauwe J H, de Boe W, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704–4712
16 Sang N, Soda S, Sei K, Ike M. Effect of aeration on stabilization of organic solid waste and microbial population dynamics in lab-scale landfill bioreactors. Journal of Bioscience and Bioengineering, 2008, 106(5): 425–432
https://doi.org/10.1263/jbb.106.425
17 Francis C A, Roberts K J, Michael J, Santoro A E, Oakley B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41): 16683–14688
https://doi.org/10.1073/pnas.0506625102
18 Wu L, Thompson D K, Li G, Hurt R A, Tiedje J M, Zhou J. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Applied and Environmental Microbiology, 2001, 67(12): 5780–5790
https://doi.org/10.1128/AEM.67.12.5780-5790.2001
19 Wu L, Liu X, Christopher W S, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole community genome amplification. Applied and Environmental Microbiology, 2006, 72(7): 4931–4941
https://doi.org/10.1128/AEM.02738-05
20 Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, de Vos P, Verstraete W, Boon N. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology, 2007, 75(1): 211–221
https://doi.org/10.1007/s00253-006-0805-8
21 Wang Z, Zhang X X, Lu X, Liu B, Li Y, Long C, Li A. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS ONE, 2014, 9(11): e113603
https://doi.org/10.1371/journal.pone.0113603
22 Shu D, He Y, Yue H, Wang Q. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresource Technology, 2015, 186: 163–172
https://doi.org/10.1016/j.biortech.2015.03.072
23 Daims H, Wagner M. The microbiology of nitrogen removal. In: Seviour RJ, Nielsen PH, eds. Microbial Ecology of Activated Sludge. London: IWA Publishing, 2010,259–280
24 Kayee P, Sonthiphand P, Rongsayamanont C, Limpiyakorn T. Archaeal amoA genes outnumber bacterial amoA genes in municipal wastewater treatment plants in Bangkok. Microbial Ecology, 2011, 62(4): 776–788
https://doi.org/10.1007/s00248-011-9893-9
25 Limpiyakorn T, Sonthiphand P, Rongsayamanont C, Polprasert C. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology, 2011, 102(4): 3694–3701
https://doi.org/10.1016/j.biortech.2010.11.085
26 Wu Y J, Whang L M, Fukushima T, Chang S H. Responses of ammonia-oxidizing archaeal and betaproteobacterial populations to wastewater salinity in a full-scale municipal wastewater treatment plant. Journal of Bioscience and Bioengineering, 2013, 115(4): 424–432
https://doi.org/10.1016/j.jbiosc.2012.11.005
27 Burgin A J, Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 2007, 5(2): 89–96
https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
28 Kraft B, Strous M, Tegetmeyer H E. Microbial nitrate respiration—genes, enzymes and environmental distribution. Journal of Biotechnology, 2011, 155(1): 104–117
https://doi.org/10.1016/j.jbiotec.2010.12.025
29 Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences, 2011, 8(7): 1779–1791
https://doi.org/10.5194/bg-8-1779-2011
30 van den Berg E M, van Dongen U, Abbas B, van Loosdrecht M C M. Enrichment of DNRA bacteria in a continuous culture. ISME Journal, 2015, 9(10): 2153–2161
https://doi.org/10.1038/ismej.2015.26
31 Strous M, van Gerven E, Kuenen J G, Jetten M. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Applied and Environmental Microbiology, 1997, 63(6): 2446–2448
32 Matsuda M, Inoue D, Anami Y, Tsutsui H, Sei K, Soda S, Ike M. Comparative analysis of DNA-based microbial community composition and substrate utilisation patterns of activated sludge microorganisms from wastewater treatment plants operated under different conditions. Water Science and Technology, 2010, 61(11): 2843–2851
https://doi.org/10.2166/wst.2010.212
33 Takada K, Hashimoto K, Soda S, Ike M, Yamashita K, Hashimoto T. Characterization of microbial community in membrane bioreactors treating domestic wastewater. Journal of Water and Environment Technology, 2014, 12(2): 99–107
https://doi.org/10.2965/jwet.2014.99
34 Ma Q, Qu Y, Shen W, Zhang Z, Wang J, Liu Z, Li D, Li H, Zhou J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology, 2015, 179: 436–443
https://doi.org/10.1016/j.biortech.2014.12.041
[1] FSE-16012-OF-PJQ_suppl_1 Download
[1] Chen Qian, Wei Chen, Wei-Hua Li, Han-Qing Yu. A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 12-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed