Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (4) : 12    https://doi.org/10.1007/s11783-017-0962-2
RESEARCH ARTICLE
A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment
Chen Qian1, Wei Chen1, Wei-Hua Li2, Han-Qing Yu1()
1. CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
2. School of Environmental & Energy Engineering, Anhui Jianzhu University, Hefei 230026, China
 Download: PDF(455 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The defects of PARAFAC were demonstrated when handling real wastewater.

PFFCA method was applied into real wastewater analysis for the first time.

Robustness and interpretability of PFFCA method were validated.

Rapid monitoring of water quality is crucial to the operation of municipal wastewater treatment plants (WWTPs). Fluorescence excitation-emission matrix (EEM) in combination with parallel factor analysis (PARAFAC) has been used as a powerful tool for the characterization of dissolved organic matter (DOM) in WWTPs. However, a recent work has revealed the drawback of PARAFAC analysis, i.e., overestimating the component number. A novel method, parallel factor framework-clustering analysis (PFFCA), has been developed in our earlier work to resolve this drawback of PARAFAC. In the present work, both PARAFAC and PFFCA were used to analyze the EEMs of water samples from a full-scale WWTP from a practical application point of view. The component number and goodness-of-fit from these two methods were compared and the relationship between the relative score change of component and the actual concentration was investigated to evaluate the estimation error introduced by both methods. PFFCA score and actual concentration exhibited a higher correlation coefficient (R2 = 0.870) compared with PARAFAC (R2<0.771), indicating that PFFCA provided a more accurate relative change estimation than PARAFAC. The results suggest that use of PARAFAC may cause confusion in selecting the component number, while EEM-PFFCA is a more reliable alternative approach for monitoring water quality in WWTPs.

Keywords Wastewater treatment plants (WWTPs)      Excitation-emission matrix (EEM)      Parallel factor (PARAFAC)      Parallel factor framework-clustering analysis (PFFCA)     
Corresponding Author(s): Han-Qing Yu   
Issue Date: 27 June 2017
 Cite this article:   
Chen Qian,Wei Chen,Wei-Hua Li, et al. A chemometric analysis on the fluorescent dissolved organic matter in a full-scale sequencing batch reactor for municipal wastewater treatment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 12.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0962-2
https://academic.hep.com.cn/fese/EN/Y2017/V11/I4/12
Fig.1  Flow chart of (a) PARAFAC and (b) PFFCA
Fig.2  (a) Protein-like and (b) humic-like component decomposed using PFFCA; (c) Residuals of PFFCA method; (d) Protein-like and (e) humic-like component decomposed using PARAFAC with 2 components; and (f) Residuals of 2-factor PARAFAC model
Fig.3  (a)–(b) Humic-like and (c) protein-like components decomposed using PARAFAC with 3 components; and (d) Residuals of 3-factor PARAFAC model
Fig.4  Relationship between PARAFAC/PFFCA scores and protein concentration
Fig.5  Average residuals where protein-like component located in each sample
1 Henderson R K, Baker A, Murphy K R, Hambly A, Stuetz R M, Khan S J. Fluorescence as a potential monitoring tool for recycled water systems: a review. Water Research, 2009, 43(4): 863–881
https://doi.org/10.1016/j.watres.2008.11.027 pmid: 19081598
2 Yang L, Han D H, Lee B M, Hur J. Characterizing treated wastewaters of different industries using clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: implications for downstream impact and source identification. Chemosphere, 2015, 127: 222–228
https://doi.org/10.1016/j.chemosphere.2015.02.028 pmid: 25746920
3 Bourgeois W, Burgess J E, Stuetz R M. On-line monitoring of wastewater quality: a review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 76(4): 337–348
https://doi.org/10.1002/jctb.393
4 He W, Chen S, Liu X, Chen J. Water quality monitoring in a slightly-polluted inland water body through remote sensing—Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science & Engineering, 2008, 2(2): 163–171
https://doi.org/10.1007/s11783-008-0027-7
5 Tartakovsky B, Lishman L A, Legge R L. Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics. Water Research, 1996, 30(12): 2941–2948
https://doi.org/10.1016/S0043-1354(96)00196-0
6 Reynolds D M, Ahmad S R. Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Research, 1997, 31(8): 2012–2018
https://doi.org/10.1016/S0043-1354(97)00015-8
7 Zhou Y, Xia S Q, Nguyen B T, Long M, Zhang J, Zhang Z Q. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value. Frontiers of Environmental Science & Engineering, 2017, 11(1): 7
https://doi.org/10.1007/s11783-017-0898-6
8 Xue S, Zhao Q L, Wei L L, Hui X J, Ma X P, Lin Y Z. Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions. Frontiers of Environmental Science & Engineering, 2012, 6(6): 784–796
https://doi.org/10.1007/s11783-012-0436-5
9 Guo J, Sheng F, Guo J H, Yang X, Ma M T, Peng Y Z. Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source. Frontiers of Environmental Science & Engineering, 2012, 6(2): 280–287
https://doi.org/10.1007/s11783-011-0336-0
10 Ishii S K L, Boyer T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environmental science & technology, 2012, 46(4): 2006–2017
https://doi.org/10.1021/es2043504 pmid: 22280543
11 Yamashita Y, Jaffé R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environmental Science & Technology, 2008, 42(19): 7374–7379
https://doi.org/10.1021/es801357h pmid: 18939573
12 Murphy K R, Hambly A, Singh S, Henderson R K, Baker A, Stuetz R, Khan S J. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environmental Science & Technology, 2011, 45(7): 2909–2916
https://doi.org/10.1021/es103015e pmid: 21361278
13 Carstea E M, Bridgeman J, Baker A, Reynolds D M. Fluorescence spectroscopy for wastewater monitoring: a review. Water Research, 2016, 95: 205–219
https://doi.org/10.1016/j.watres.2016.03.021 pmid: 26999254
14 Fang F, Yang Y, Guo J S, Zhou H, Fu C, Li Z. Three-dimensional fluorescence spectral characterization of soil dissolved organic matters in the fluctuating water-level zone of Kai County, Three Gorges Reservoir. Frontiers of Environmental Science & Engineering, 2011, 5(3): 426–434
https://doi.org/10.1007/s11783-010-0264-4
15 Li W H, Sheng G P, Liu X W, Yu H Q. Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. Water Research, 2008, 42(12): 3173–3181
https://doi.org/10.1016/j.watres.2008.03.010 pmid: 18423798
16 Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography, Methods, 2008, 6(11): 572–579
https://doi.org/10.4319/lom.2008.6.572
17 Andersen C M, Bro R. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. Journal of Chemometrics, 2003, 17(4): 200–215
https://doi.org/10.1002/cem.790
18 Cohen E, Levy G J, Borisover M. Fluorescent components of organic matter in wastewater: efficacy and selectivity of the water treatment. Water Research, 2014, 55: 323–334
https://doi.org/10.1016/j.watres.2014.02.040 pmid: 24636841
19 Ou H S, Wei C H, Mo C H, Wu H Z, Ren Y, Feng C H. Novel insights into anoxic/aerobic1/aerobic2 biological fluidized-bed system for coke wastewater treatment by fluorescence excitation-emission matrix spectra coupled with parallel factor analysis. Chemosphere, 2014, 113: 158–164
https://doi.org/10.1016/j.chemosphere.2014.04.102 pmid: 25065804
20 Rosario-Ortiz F L, Korak J A. Oversimplification of dissolved organic matter fluorescence analysis: potential pitfalls of current methods. Environmental Science & Technology, 2017, 51(2): 759–761
https://doi.org/10.1021/acs.est.6b06133 pmid: 28032506
21 Del Vecchio R, Blough N V. On the origin of the optical properties of humic substances. Environmental Science & Technology, 2004, 38(14): 3885–3891
https://doi.org/10.1021/es049912h pmid: 15298197
22 Qian C, Wang L F, Chen W, Wang Y S, Liu X Y, Jiang H, Yu H Q. Fluorescence approach for the determination of fluorescent dissolved organic matter. Analytical Chemistry, 2017, 89(7): 4264–4271
https://doi.org/10.1021/acs.analchem.7b00324 pmid: 28252936
23 Ni B J, Xie W M, Liu S G, Yu H Q, Wang Y Z, Gan W, Dai X L. Modeling and simulation of the sequencing batch reactor at a full-scale municipal wastewater treatment plant. American Institute of Chemical Engineers, 2009, 55(8): 2186–2196
https://doi.org/10.1002/aic.11820
24 APHA. Standard Methods for Examination of Water & Wastewater, 20th ed. Washingtong DC, USA: American Public Health Association, 1998
25 Lakowicz J R. Fluorescence Quenching: Theory and Applications, 2nd Ed. New York, NY: Kluwer Academic/Plenum, 1991
26 Andersson C A, Bro R. The N-way toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 1–4
https://doi.org/10.1016/S0169-7439(00)00071-X
27 LeC, KunachevaC, StuckeyD C. “Protein” measurement in biological wastewater treatment systems: a critical evaluation.Environmental Science & Technology, 2016, 50(6): 3074–3081
https://doi.org/10.1021/acs.est.5b05261 pmid: 26893149
[1] FSE-17060-OF-QC_suppl_1 Download
[1] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[2] Junqin PANG, Masami MATSUDA, Masashi KURODA, Daisuke INOUE, Kazunari SEI, Kei NISHIDA, Michihiko IKE. Characterization of the genes involved in nitrogen cycling in wastewater treatment plants using DNA microarray and most probable number-PCR[J]. Front. Environ. Sci. Eng., 2016, 10(4): 7-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed