Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (6) : 8    https://doi.org/10.1007/s11783-016-0874-6
RESEARCH ARTICLE
Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification
Chunming Wang,Huirong Lin(),Chengsong Ye()
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
 Download: PDF(674 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The functional surface-modified MNPs were capable of capture E. coli with high efficiency.

After induced to VBNC state by chlorination, E. coli cells could be separated by MNPs with an additional incubation process.

This study provides a facile and economic method for VBNC cell enrichment and purification.

GRAPHIC ABSTRACT

Viable But Nonculturable (VBNC) Bacteria, which represent a unique population of microorganisms in drinking water systems, have become a potential threat to human health. Current studies on VBNC cells usually fail to obtain pure VBNC state bacteria, which may lead to inaccurate results. We therefore introduce a novel method of VBNC cell separation and purification in this paper. PAH-coated magnetic nanoparticles (MNPs) were synthesized and found to be capable of capturing and releasing bacterial cells with high efficiency. With the aid of an additional incubation step, VBNC cells were easily isolated and purified from normal bacteria using functional MNPs. Our method represents a new technique that can be utilized in studies of VBNCs.

Keywords Drinking water biosafety      VBNC, Nanoparticles      Magnetic separation and purification     
PACS:     
Fund: 
Corresponding Author(s): Huirong Lin,Chengsong Ye   
Issue Date: 27 September 2016
 Cite this article:   
Chunming Wang,Huirong Lin,Chengsong Ye. Functional magnetic nanoparticles for facile viable but nonculturable bacteria separation and purification[J]. Front. Environ. Sci. Eng., 2016, 10(6): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-016-0874-6
https://academic.hep.com.cn/fese/EN/Y2016/V10/I6/8
Fig.1  SEM characterization of MNPs morphology
Fig.2  (a) Images of bacteria captured by MNPs, (b) comparison of capture dfficienies at different bacterial concentration
Fig.3  Desorption kinetics of culturable bacteria after incubation. Error bars represent standard errors of three biological replicates (P<0.05). (a) Bacteria numbers change with time, (b) Percentage of magnetic bacteria decrease with time
Fig.4  Characterization of the captured VBNC bacteria by fluorescence microscopy
Fig.5  SEM characterization of culturable and VBNC E. coli(a, b: normal cells, c, d: VBNC cells)
1 Figueras M J, Borrego J J. New perspectives in monitoring drinking water microbial quality. International Journal of Environmental Research and Public Health, 2010, 7(12): 4179–4202
https://doi.org/10.3390/ijerph7124179 pmid: 21318002
2 Hunter P R, MacDonald A M, Carter R C. Water supply and health. PLOS Medicine, 2010, 7(11): e1000361
https://doi.org/10.1371/journal.pmed.1000361 pmid: 21085692
3 Li Q, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 2008, 42(18): 4591–4602
https://doi.org/10.1016/j.watres.2008.08.015 pmid: 18804836
4 Lin S, Huang R, Cheng Y, Liu J, Lau B L, Wiesner M R. Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Research, 2013, 47(12): 3959–3965
https://doi.org/10.1016/j.watres.2012.09.005 pmid: 23036278
5 Martínez-Huitle C A, Brillas E. Electrochemical alternatives for drinking water disinfection. Angewandte Chemie International Edition, 2008, 47(11): 1998–2005
https://doi.org/10.1002/anie.200703621 pmid: 18219638
6 Xu H S, Roberts N, Singleton F L, Attwell R W, Grimes D J, Colwell R R. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, 1982, 8(4): 313–323
https://doi.org/10.1007/BF02010671 pmid: 24226049
7 Li L, Mendis N, Trigui H, Oliver J D, Faucher S P. The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology, 2014, 5: 258
https://doi.org/10.3389/fmicb.2014.00258 pmid: 24917854
8 Ramamurthy T, Ghosh A, Pazhani G P, Shinoda S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Frontiers in Public Health, 2014, 2: 103
https://doi.org/10.3389/fpubh.2014.00103 pmid: 25133139
9 Du M, Chen J, Zhang X, Li A, Li Y, Wang Y. Retention of virulence in a viable but nonculturable Edwardsiellatarda isolate. Applied and Environmental Microbiology, 2007, 73(4): 1349–1354
https://doi.org/10.1128/AEM.02243-06 pmid: 17189433
10 Cook K L, Bolster C H. Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. Journal of Applied Microbiology, 2007, 103(3): 573–583
https://doi.org/10.1111/j.1365-2672.2006.03285.x pmid: 17714390
11 Muela A, Seco C, Camafeita E, Arana I, Orruño M, López J A, Barcina I. Changes in Escherichia coli outer membrane subproteome under environmental conditions inducing the viable but nonculturable state. FEMS Microbiology Ecology, 2008, 64(1): 28–36
https://doi.org/10.1111/j.1574-6941.2008.00453.x pmid: 18318713
12 Nowakowska J, Oliver J D. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiology Ecology, 2013, 84(1): 213–222
https://doi.org/10.1111/1574-6941.12052 pmid: 23228034
13 Oliver J D, Dagher M, Linden K. Induction of Escherichia coli and Salmonella typhimurium into the viable but nonculturable state following chlorination of wastewater. Journal of Water and Health, 2005, 3(3): 249–257
https://doi.org/10.2166/wh.2005.040 pmid: 16209029
14 Pinto D, Almeida V, Almeida Santos M, Chambel L. Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli. Journal of Applied Microbiology, 2011, 110(6): 1601–1611
https://doi.org/10.1111/j.1365-2672.2011.05016.x pmid: 21447017
15 Pinto D, Santos M A, Chambel L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Critical Reviews in Microbiology, 2015, 41(1): 61–76
https://doi.org/10.3109/1040841X.2013.794127 pmid: 23848175
16 Kusumoto A, Asakura H, Kawamoto K. General stress sigma factor RpoS influences time required to enter the viable but non-culturable state in Salmonella enterica. Microbiology and Immunology, 2012, 56(4): 228–237
https://doi.org/10.1111/j.1348-0421.2012.00428.x pmid: 22256797
17 Dwidjosiswojo Z, Richard J, Moritz M M, Dopp E, Flemming H C, Wingender J. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments. International Journal of Hygiene and Environmental Health, 2011, 214(6): 485–492
https://doi.org/10.1016/j.ijheh.2011.06.004 pmid: 21742552
18 Shleeva M, Mukamolova G V, Young M, Williams H D, Kaprelyants A S. Formation of ‘non-culturable’ cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation. Microbiology, 2004, 150(Pt 6): 1687–1697
https://doi.org/10.1099/mic.0.26893-0 pmid: 15184555
19 Ayrapetyan M, Williams T C, Oliver J D. Interspecific quorum sensing mediates the resuscitation of viable but nonculturable vibrios. Applied and Environmental Microbiology, 2014, 80(8): 2478–2483
https://doi.org/10.1128/AEM.00080-14 pmid: 24509922
20 Pankhurst Q A, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics. D, Applied Physics, 2003, 36(13): R167–R181
https://doi.org/10.1088/0022-3727/36/13/201
21 Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 2007, 46(8): 1222–1244
https://doi.org/10.1002/anie.200602866 pmid: 17278160
22 Berry C C, Curtis A S. Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics. D, Applied Physics, 2003, 36(13): R198–R206
https://doi.org/10.1088/0022-3727/36/13/203
23 Huang Y F, Wang Y F, Yan X P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environmental Science & Technology, 2010, 44(20): 7908–7913
https://doi.org/10.1021/es102285n pmid: 20866050
24 Zhang D, Berry J P, Zhu D, Wang Y, Chen Y, Jiang B, Huang S, Langford H, Li G, Davison P A, Xu J, Aries E, Huang W E. Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME Journal, 2015, 9(3): 603–614
https://doi.org/10.1038/ismej.2014.161 pmid: 25191996
25 Fiorito P A, Gonçales V R, Ponzio E A, de Torresi S I C. Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chemical Communications, 2005, (3): 366–368
https://doi.org/10.1039/B412583E pmid: 15645039
26 Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 2008, 108(6): 2064–2110
https://doi.org/10.1021/cr068445e pmid: 18543879
[1] FSE-16039-OF-WCM_suppl_1 Download
[1] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed