Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (6) : 79    https://doi.org/10.1007/s11783-021-1513-4
RESEARCH ARTICLE
Distinct community assembly processes underlie significant spatiotemporal dynamics of abundant and rare bacterioplankton in the Yangtze River
Malan Yi1, Yao Fang1, Guoping Hu2, Shufeng Liu1, Jinren Ni1, Tang Liu3,4()
1. College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences (Ministry of Education), Beijing 100871, China
2. Fluid Science and Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA 6009, Australia
3. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
4. State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China
 Download: PDF(1358 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Season and landform influenced spatiotemporal patterns of abundant and rare taxa.

• Different stochastic processes dominated abundant and rare subcommunity assembly.

• River flow and suspended solids regulated assembly processes of rare taxa.

The rare microbial biosphere provides broad ecological services and resilience to various ecosystems. Nevertheless, the biogeographical patterns and assembly processes of rare bacterioplankton communities in large rivers remain uncertain. In this study, we investigated the biogeography and community assembly processes of abundant and rare bacterioplankton taxa in the Yangtze River (China) covering a distance of 4300 km. The results revealed similar spatiotemporal patterns of abundant taxa (AT) and rare taxa (RT) at both taxonomic and phylogenetic levels, and analysis of similarities revealed that RT was significantly influenced by season and landform than AT. Furthermore, RT correlated with more environmental factors than AT, whereas environmental and spatial factors explained a lower proportion of community shifts in RT than in AT. The steeper distance–decay slopes in AT indicated higher spatial turnover rates of abundant subcommunities than rare subcommunities. The null model revealed that both AT and RT were mainly governed by stochastic processes. However, dispersal limitation primarily governed the AT, whereas the undominated process accounted for a higher fraction of stochastic processes in RT. River flow and suspended solids mediated the balance between the stochastic and deterministic processes in RT. The spatiotemporal dynamics and assembly processes of total taxa were more similar as AT than RT. This study provides new insights into both significant spatiotemporal dynamics and inconsistent assembly processes of AT and RT in large rivers.

Keywords Rare taxa      Biogeography      Community assembly      Bacterioplankton      The Yangtze River     
Corresponding Author(s): Tang Liu   
Just Accepted Date: 16 September 2021   Issue Date: 25 November 2021
 Cite this article:   
Malan Yi,Yao Fang,Guoping Hu, et al. Distinct community assembly processes underlie significant spatiotemporal dynamics of abundant and rare bacterioplankton in the Yangtze River[J]. Front. Environ. Sci. Eng., 2022, 16(6): 79.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1513-4
https://academic.hep.com.cn/fese/EN/Y2022/V16/I6/79
Fig.1  Environmental drivers of the total, abundant and rare bacterioplankton communities for spring (a) and autumn (b). Pairwise Pearson’s correlation coefficients among environmental factors with p?>?0.05 are showed with a color gradient. Mantel tests are performed for relating bacterial community composition (Bray-Curtis distance) with environmental factors. The edge width denotes Mantel’s r value, and edge color indicates the Mantel’s p value based on 999 permutations. These abbreviations of environmental factors are the same as those in Methods and Fig. S1.
Fig.2  Principal coordinates analysis of all samples for total (a), abundant (b) and rare (c) bacterial (sub)communities. The Bray-Curtis distance is used for quantifying the community compositional variation. Red indicates autumn, and blue indicates spring.
Fig.3  Principal coordinates analysis showing the bacterioplankton community composition among different landforms in the total-spring (a), abundant-spring (b), rare-spring (c), total-autumn (d), abundant-autumn (e), and rare-autumn (f) samples. The Bray-Curtis distance is used for quantifying the community compositional variation.
Fig.4  Distance-decay patterns based on the Bray-Curtis distance of bacterioplankton community composition and river kilometer (rkm) in spring (a) and autumn (b), respectively. The permutational test (999 times) was used for examining the statistical significance of the distance-decay slope.
Fig.5  The percent of turnover in community composition governed primarily by variable selection, homogeneous selection, dispersal limitation, homogenizing dispersal and undominated process for total community using the entire-community null model (a) and phylogenetic bin-based null model (b). Deterministic processes= homogeneous selection+ variable selection; Stochastic processes= homogenizing dispersal+ dispersal limitation+ undominated process.
Environmental factors Abundant (Mantel’s r) Rare (Mantel’s r)
Spring Autumn Spring Autumn
SO42 −0.186 −0.028 −0.066 0.252*
WH −0.101 −0.039 0.056 0.101
F −0.090 −0.037 0.014 0.026
SS −0.141 0.097 0.209* 0.200*
Q −0.041 0.004 0.234** 0.433**
T −0.069 −0.011 0.300** 0.171
pH −0.130 0.155* 0.016 0.106
EC 0.129 −0.014 −0.009 0.363**
Cl −0.052 0.112 −0.113 0.096
NH4+ 0.034 −0.109 0.156 0.310**
NO3 −0.039 0.065 0.132 0.049
COD −0.077 0.052 −0.151 0.162
DO 0.077 0.103 0.018 0.045
BOD 0.022 0.054 0.075 0.299**
TP −0.083 0.004 −0.068 0.034
TN 0.028 0.078 0.134 0.042
DOC 0.063 0.067 −0.042 0.102
Tab.1  Mantel analysis of the βNTI of abundant and rare taxa against environmental factors for spring and autumn. Asterisks denote significance (*, p<0.05; **, p<0.01)
1 A Amir, D McDonald, J A Navas-Molina, E Kopylova, J T Morton, Z Zech Xu, E P Kightley, L R Thompson, E R Hyde, A Gonzalez, R Knight (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems, 2(2): e00191–16
https://doi.org/10.1128/mSystems.00191-16 pmid: 28289731
2 A Astorga, J Oksanen, M Luoto, J Soininen, R Virtanen, T Muotka (2012). Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules? Global Ecology and Biogeography, 21(3): 365–375
https://doi.org/10.1111/j.1466-8238.2011.00681.x
3 A K Aufdenkampe, E Mayorga, P A Raymond, J M Melack, S C Doney, S R Alin, R E Aalto, K Yoo (2011). Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Frontiers in Ecology and the Environment, 9(1): 53–60
https://doi.org/10.1890/100014
4 Y Benjamini, Y Hochberg (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological, 57(1): 289–300
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
5 N A Bokulich, B D Kaehler, J R Rideout, M Dillon, E Bolyen, R Knight, G A Huttley, J Gregory Caporaso (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1): 90
https://doi.org/10.1186/s40168-018-0470-z pmid: 29773078
6 E Bolyen, J R Rideout, M R Dillon, N A Bokulich, C C Abnet, G A Al-Ghalith, H Alexander, E J Alm, M Arumugam, F Asnicaret al.. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852–857
https://doi.org/10.1038/s41587-019-0209-9 pmid: 31341288
7 D A Caron, P D Countway (2009). Hypotheses on the role of the protistan rare biosphere in a changing world. Aquatic Microbial Ecology, 57: 227–238
https://doi.org/10.3354/ame01352
8 W Chen, K Ren, A Isabwe, H Chen, M Liu, J Yang (2019). Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome, 7(1): 138
https://doi.org/10.1186/s40168-019-0749-8 pmid: 31640783
9 M T Cottrell, K L David (2003). Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnology and Oceanography, 48(1): 168–178
https://doi.org/10.4319/lo.2003.48.1.0168
10 S Evans, J B H Martiny, S D Allison (2017). Effects of dispersal and selection on stochastic assembly in microbial communities. ISME Journal, 11(1): 176–185
https://doi.org/10.1038/ismej.2016.96 pmid: 27494293
11 P G Falkowski, T Fenchel, E F Delong (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879): 1034–1039
https://doi.org/10.1126/science.1153213 pmid: 18497287
12 Q Gao, Y Yang, J Feng, R Tian, X Guo, D Ning, L Hale, M Wang, J Cheng, L Wu, M Zhao, J Zhao, L Wu, Y Qin, Q Qi, Y Liang, B Sun, H Chu, J Zhou (2019). The spatial scale dependence of diazotrophic and bacterial community assembly in paddy soil. Global Ecology and Biogeography, 28: 1093–1105
https://doi.org/10.1111/geb.12917
13 B Gilbert, J R Bennett (2010). Partitioning variation in ecological communities: Do the numbers add up? Journal of Applied Ecology, 47(5): 1071–1082
https://doi.org/10.1111/j.1365-2664.2010.01861.x
14 L Guidi, S Chaffron, L Bittner, D Eveillard, A Larhlimi, S Roux, Y Darzi, S Audic, L Berline, J Brum, L P Coelho, J C I Espinoza, S Malviya, S Sunagawa, C Dimier, S Kandels-Lewis, M Picheral, J Poulain, S Searson, L Stemmann, F Not, P Hingamp, S Speich, M Follows, L Karp-Boss, E Boss, H Ogata, S Pesant, J Weissenbach, P Wincker, S G Acinas, P Bork, C de Vargas, D Iudicone, M B Sullivan, J Raes, E Karsenti, C Bowler, G Gorsky, the Tara Oceans coordinators (2016). Plankton networks driving carbon export in the oligotrophic ocean. Nature, 532(7600): 465–470
https://doi.org/10.1038/nature16942 pmid: 26863193
15 C A Hanson, J A Fuhrman, M C Horner-Devine, J B H Martiny (2012). Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews. Microbiology, 10(7): 497–506
https://doi.org/10.1038/nrmicro2795 pmid: 22580365
16 M C Horner-Devine, B J M Bohannan (2006). Phylogenetic clustering and overdispersion in bacterial communities. Ecology, 87(sp7): S100–S108
https://doi.org/10.1890/0012-9658(2006)87[100:PCAOIB]2.0.CO;2 pmid: 16922306
17 J K Jansson, K S Hofmockel (2020). Soil microbiomes and climate change. Nature Reviews. Microbiology, 18(1): 35–46
https://doi.org/10.1038/s41579-019-0265-7 pmid: 31586158
18 M Ji, W Kong, J Stegen, L Yue, F Wang, X Dong, D A Cowan, B C Ferrari (2020). Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria in Tibetan Plateau grassland soils. Environmental Microbiology, 22(6): 2261–2272
https://doi.org/10.1111/1462-2920.14993 pmid: 32216022
19 X Jia, F Dini-Andreote, J Falcão Salles (2018). Community assembly processes of the microbial rare biosphere. Trends in Microbiology, 26(9): 738–747
https://doi.org/10.1016/j.tim.2018.02.011 pmid: 29550356
20 C Jiao, D Zhao, J Zeng, L Guo, Z Yu (2020). Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. Science of the Total Environment, 740: 140010
https://doi.org/10.1016/j.scitotenv.2020.140010 pmid: 32563874
21 S Jiao, Y Lu (2020a). Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Global Change Biology, 26(8): 4506–4520
https://doi.org/10.1111/gcb.15130 pmid: 32324306
22 S Jiao, Y Lu (2020b). Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environmental Microbiology, 22(3): 1052–1065
https://doi.org/10.1111/1462-2920.14815 pmid: 31599105
23 K Katoh, D M Standley (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4): 772–780
https://doi.org/10.1093/molbev/mst010 pmid: 23329690
24 T S Kim, J Y Jeong, G F Wells, H D Park (2013). General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor. Applied Microbiology and Biotechnology, 97(4): 1755–1765
https://doi.org/10.1007/s00253-012-4002-7 pmid: 22526777
25 M A Leibold, M Holyoak, N Mouquet, P Amarasekare, J M Chase, M F Hoopes, R D Holt, J B Shurin, R Law, D Tilman, M Loreau, A Gonzalez (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7(7): 601–613
https://doi.org/10.1111/j.1461-0248.2004.00608.x
26 G Lima-Mendez, K Faust, N Henry, J Decelle, S Colin, F Carcillo, S Chaffron, J C Ignacio-Espinosa, S Roux, F Vincentet al.. (2015). Determinants of community structure in the global plankton interactome. Science, 348(6237): 1262073-1–1262073-9
https://doi.org/10.1126/science.1262073 pmid: 25999517
27 E S Lindström, S Langenheder (2012). Local and regional factors influencing bacterial community assembly. Environmental Microbiology Reports, 4(1): 1–9
https://doi.org/10.1111/j.1758-2229.2011.00257.x pmid: 23757223
28 S Liu, H Wang, L Chen, J Wang, M Zheng, S Liu, Q Chen, J Ni (2020). Comammox Nitrospira within the Yangtze River continuum: Community, biogeography, and ecological drivers. ISME Journal, 14(10): 2488–2504
https://doi.org/10.1038/s41396-020-0701-8 pmid: 32555502
29 T Liu, S Liu, S He, Z Tian, M Zheng (2021). Minimization of N2O emission through intermittent aeration in a Sequencing Batch Reactor (SBR): main behavior and mechanism. Water, 13(2): 210
https://doi.org/10.3390/w13020210
30 T Liu, A N Zhang, J Wang, S Liu, X Jiang, C Dang, T Ma, S Liu, Q Chen, S Xie, T Zhang, J Ni (2018). Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Microbiome, 6(1): 16
https://doi.org/10.1186/s40168-017-0388-x pmid: 29351813
31 R Logares, E S Lindström, S Langenheder, J B Logue, H Paterson, J Laybourn-Parry, K Rengefors, L Tranvik, S Bertilsson (2013). Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME Journal, 7(5): 937–948
https://doi.org/10.1038/ismej.2012.168 pmid: 23254515
32 M D J Lynch, J D Neufeld (2015). Ecology and exploration of the rare biosphere. Nature Reviews Microbiology, 13: 217–229
33 B Ma, H Wang, M Dsouza, J Lou, Y He, Z Dai, P C Brookes, J Xu, J A Gilbert (2016). Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME Journal, 10: 1891–1901
34 J B H Martiny, J A Eisen, K Penn, S D Allison, M C Horner-Devine (2011). Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences of the United States of America, 108(19): 7850–7854
https://doi.org/10.1073/pnas.1016308108 pmid: 21518859
35 Y Mo, W Zhang, J Yang, Y Lin, Z Yu, S Lin (2018). Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME Journal, 12(9): 2198–2210
https://doi.org/10.1038/s41396-018-0153-6 pmid: 29880912
36 D R Nemergut, S K Schmidt, T Fukami, S P O’Neill, T M Bilinski, L F Stanish, J E Knelman, J L Darcy, R C Lynch, P Wickey, S Ferrenberg (2013). Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77(3): 342–356
https://doi.org/10.1128/MMBR.00051-12 pmid: 24006468
37 D Ning, Y Deng, J M Tiedje, J Zhou (2019). A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 116(34): 16892–16898
https://doi.org/10.1073/pnas.1904623116 pmid: 31391302
38 D Ning, M Yuan, L Wu, Y Zhang, X Guo, X Zhou, Y Yang, A P Arkin, M K Firestone, J Zhou (2020). A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 11(1): 4717
https://doi.org/10.1038/s41467-020-18560-z pmid: 32948774
39 P Nyirabuhoro, M Liu, P Xiao, L Liu, Z Yu, L Wang, J Yang (2020). Seasonal variability of conditionally rare taxa in the Water Column Bacterioplankton Community of Subtropical Reservoirs in China. Microbial Ecology, 80(1): 14–26
https://doi.org/10.1007/s00248-019-01458-9 pmid: 31836929
40 J T Payne, J J Millar, C R Jackson, C A Ochs (2017). Patterns of variation in diversity of the Mississippi River microbiome over 1300 kilometers. PLoS One, 12(3): e0174890
https://doi.org/10.1371/journal.pone.0174890 pmid: 28350888
41 C Pedrós-Alió (2012). The rare bacterial biosphere. Annual Review of Marine Science, 4(1): 449–466
https://doi.org/10.1146/annurev-marine-120710-100948 pmid: 22457983
42 H Peter, E Jeppesen, L De Meester, R Sommaruga (2018). Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet. ISME Journal, 12(2): 544–555
https://doi.org/10.1038/ismej.2017.191
43 M N Price, P S Dehal, A P Arkin (2010). FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One, 5(3): e9490
https://doi.org/10.1371/journal.pone.0009490 pmid: 20224823
44 C Quast, E Pruesse, P Yilmaz, J Gerken, T Schweer, P Yarza, J Peplies, F O Glöckner (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(Database issue): D590–D596
pmid: 23193283
45 D S Read, H S Gweon, M J Bowes, L K Newbold, D Field, M J Bailey, R I Griffiths (2015). Catchment-scale biogeography of riverine bacterioplankton. ISME Journal, 9(2): 516–526
https://doi.org/10.1038/ismej.2014.166 pmid: 25238398
46 T Rognes, T Flouri, B Nichols, C Quince, F Mahé (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4: e2584
https://doi.org/10.7717/peerj.2584 pmid: 27781170
47 D Savio, L Sinclair, U Z Ijaz, J Parajka, G H Reischer, P Stadler, A P Blaschke, G Blöschl, R L Mach, A K T Kirschner, A H Farnleitner, A Eiler (2015). Bacterial diversity along a 2600 km river continuum. Environmental Microbiology, 17(12): 4994–5007
https://doi.org/10.1111/1462-2920.12886 pmid: 25922985
48 Y Shi, Y Li, X Xiang, R Sun, T Yang, D He, K Zhang, Y Ni, Y G Zhu, J M Adams, H Chu (2018). Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome, 6(1): 27
https://doi.org/10.1186/s40168-018-0409-4 pmid: 29402331
49 T W Smith, J T Lundholm (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33(4): 648–655
https://doi.org/10.1111/j.1600-0587.2009.06105.x
50 M L Sogin, H G Morrison, J A Huber, D M Welch, S M Huse, P R Neal, J M Arrieta, G J Herndl (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences of the United States of America, 103(32): 12115–12120
https://doi.org/10.1073/pnas.0605127103 pmid: 16880384
51 C Staley, T J Gould, P Wang, J Phillips, J B Cotner, M J Sadowsky (2015). Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Science of the Total Environment, 505: 435–445
https://doi.org/10.1016/j.scitotenv.2014.10.012 pmid: 25461045
52 J C Stegen, X Lin, J K Fredrickson, X Chen, D W Kennedy, C J Murray, M L Rockhold, A Konopka (2013). Quantifying community assembly processes and identifying features that impose them. ISME Journal, 7(11): 2069–2079
https://doi.org/10.1038/ismej.2013.93 pmid: 23739053
53 J C Stegen, X Lin, J K Fredrickson, A E Konopka (2015). Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology, 6: 370
https://doi.org/10.3389/fmicb.2015.00370 pmid: 25983725
54 J C Stegen, X Lin, A E Konopka, J K Fredrickson (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. ISME Journal, 6(9): 1653–1664
https://doi.org/10.1038/ismej.2012.22 pmid: 22456445
55 L Sun, H Wang, Y Kan, S Wang (2018). Distribution of phytoplankton community and its influence factors in an urban river network, East China. Frontiers of Environmental Science & Engineering, 12(6): 13
https://doi.org/10.1007/s11783-018-1062-7
56 W Sun, C Xia, M Xu, J Guo, G Sun (2016). Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecological Indicators, 66: 306–312
https://doi.org/10.1016/j.ecolind.2016.01.054
57 B M Tripathi, J C Stegen, M Kim, K Dong, J M Adams, Y K Lee (2018). Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME Journal, 12(4): 1072–1083
https://doi.org/10.1038/s41396-018-0082-4 pmid: 29515169
58 M Vellend (2010). Conceptual synthesis in community ecology. Quarterly Review of Biology, 85(2): 183–206
https://doi.org/10.1086/652373 pmid: 20565040
59 W Wan, H P Grossart, D He, W Yuan, Y Yang (2021a). Stronger environmental adaptation of rare rather than abundant bacterioplankton in response to dredging in eutrophic Lake Nanhu (Wuhan, China). Water Research, 190: 116751
https://doi.org/10.1016/j.watres.2020.116751 pmid: 33348071
60 W Wan, S Liu, X Li, Y Xing, W Chen, Q Huang (2021b). Bridging rare and abundant bacteria with ecosystem multifunctionality in salinized agricultural soils: from community diversity to environmental adaptation. mSystems, 6(2): e01221–20
https://doi.org/10.1128/mSystems.01221-20 pmid: 33785569
61 J Wang, J Shen, Y Wu, C Tu, J Soininen, J C Stegen, J He, X Liu, L Zhang, E Zhang (2013). Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME Journal, 7(7): 1310–1321
https://doi.org/10.1038/ismej.2013.30 pmid: 23446837
62 Y Wang, F Ye, S Wu, J Wu, J Yan, K Xu, Y Hong (2020). Biogeographic pattern of bacterioplanktonic community and potential function in the Yangtze River: Roles of abundant and rare taxa. Science of the Total Environment, 747: 141335
https://doi.org/10.1016/j.scitotenv.2020.141335 pmid: 32795800
63 G Wei, M Li, F Li, H Li, Z Gao (2016). Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Applied Microbiology and Biotechnology, 100(22): 9683–9697
https://doi.org/10.1007/s00253-016-7802-3 pmid: 27557722
64 W Wu, R Logares, B Huang, C H Hsieh (2017). Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environmental Microbiology, 19(1): 287–300
https://doi.org/10.1111/1462-2920.13606 pmid: 27871146
65 L W Wu, D Ning, B Zhang, Y Li, P Zhang, X Shan, Qiuting Zhang, M R Brown, Z Li, J D Van Nostrand, F Ling, et al.. (2019). Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 4: 1183–1195
66 F Zhang, H Zhang, Y Yuan, D Liu, C Zhu, D Zheng, G Li, Y Wei, D Sun (2020). Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network. Frontiers of Environmental Science & Engineering, 14(2): 28
https://doi.org/10.1007/s11783-019-1207-3
67 W Zhang, Y Pan, J Yang, H Chen, B Holohan, J Vaudrey, S Lin, G B McManus (2018). The diversity and biogeography of abundant and rare intertidal marine microeukaryotes explained by environment and dispersal limitation. Environmental Microbiology, 20(2): 462–476
https://doi.org/10.1111/1462-2920.13916 pmid: 28881067
68 J Zhou, D Ning (2017). Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81(4): e00002–e00017
https://doi.org/10.1128/MMBR.00002-17 pmid: 29021219
[1] FSE-21095-OF-YML_suppl_1 Download
[1] Bingdi Liu, Lin Zhang, Jason H. Knouft, Fangqiong Ling. Meter-scale variation within a single transect demands attention to taxon accumulation curves in riverine microbiome studies[J]. Front. Environ. Sci. Eng., 2022, 16(5): 64-.
[2] Wenwen Xie, Yanpeng Li, Wenyan Bai, Junli Hou, Tianfeng Ma, Xuelin Zeng, Liyuan Zhang, Taicheng An. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed