Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (7) : 94    https://doi.org/10.1007/s11783-021-1515-2
REVIEW ARTICLE
Bioinspired cellulose-based membranes in oily wastewater treatment
Abdul Halim1(), Lusi Ernawati2, Maya Ismayati3, Fahimah Martak4, Toshiharu Enomae5
1. Department of Chemical Engineering, Universitas Internasional Semen Indonesia, Gresik 61122, Indonesia
2. Department of Chemical Engineering, Kalimantan Institute of Technology, Balikpapan 76127, Indonesia
3. Research Center for Biomaterials, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
4. Department of Chemistry, Faculty of Sciences, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
5. Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
 Download: PDF(5650 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Cellulose-based membrane separates oily wastewater mimicking the living things.

• The three central surface mechanisms were reviewed.

• Preparation, performance, and mechanism are critically evaluated.

• First review of wettability based cellulose membrane as major material.

• The current and future importance of the research are discussed.

It is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a membrane material that mimics one of three typical biostructures: superhydrophobic, underwater superoleophobic, and Janus surfaces. Nature has provided efficient and effective structures through the evolutionary process. This has inspired many researchers to create technologies that mimic nature’s structures or the fabrication process. Lotus leaves, fish scales, and Namib beetles are three representative structures with distinct functional and surface properties: superhydrophobic, underwater superoleophobic, and Janus surfaces. The characteristics of these structures have been widely studied and applied to membrane materials to improve their performance. One attractive membrane material is cellulose, which has been studied from the perspective of its biodegradability and sustainability. In this review, the principles, mechanisms, fabrication processes, and membrane performances are summarized and compared. The theory of wettability is also described to build a comprehensive understanding of the concept. Finally, future outlook is discussed to challenge the gap between laboratory and industrial applications.

Keywords Cellulose      Bioinspired membrane      Superhydrophobic surface      Underwater superoleophobic surface      Oil-water separation     
Corresponding Author(s): Abdul Halim   
Issue Date: 02 December 2021
 Cite this article:   
Abdul Halim,Lusi Ernawati,Maya Ismayati, et al. Bioinspired cellulose-based membranes in oily wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(7): 94.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1515-2
https://academic.hep.com.cn/fese/EN/Y2022/V16/I7/94
Separation method Disadvantages Advantages
Adsorption Low hydrophobicity, high water uptake, high retention time, low efficiency, and secondary pollutant in regeneration stage Low chemicals consumption, high removal of oil and chemical oxygen demand, low cost, low-energy consumption, natural sorbents are environmentally friendly
Coagulation High operating costs, secondary pollution problem, skilled operator dependent and composition dependent Good separation, flexibility to be combined with floatation for higher separation efficiency
Electrocoagulation High investment cost, anode passivation, high energy consumption Effective separation, simple operation, economical
Filtration High energy demand, high operating costs, fouling Fast separation, pressure dependent
Centrifugation Produces low-quality oil, high energy demand, fouling, time-consuming, space limitations, expensive maintenance Efficient for free and dispersed oil, fast separation
Gravity settling Not efficient for high-density oil, time-consuming, space limitations Separation of bulk oils, economical, low energy consumption
Gas flotation Requires large air volume, slow separation Effective separation, energy efficient, simple operation
Tab.1  Comparison of separation methods in oily wastewater treatment. Reproduced with permission (Rasouli et?al., 2021). Copyright 2021, Elsevier
Fig.1  (a) Contact angle of a smooth surface and the forced employment in its three interfaces, (b) Wenzel state, (c) Cassie-Baxter state, (d) Illustration of system free energy as a function of liquid-vapor interface, and (e) Infographic of the equation to predict contact angle.
Fig.2  (a) Several types of surface properties, (b) illustration of a receding contact angle, advancing contact angle and sliding contact angle, (c) measurement of an advancing and receding contact angle.
Fig.3  (a) The surface morphology of the lotus leaf consists of rough microscale groves and nanoscale tubes. The tubes consist of wax layer. (b) Separation mechanism of the superhydrophobic membrane. (a) Reproduced from (Ensikat et?al., 2011) Copyright 2011, Beilstein-Institut.
Fig.4  Schematic diagram of cellulose as a supporting material in a superhydrophobic membrane (a). Scanning electron microscopy (SEM) of several cellulose-based membranes, i.e., woven fabric (b), aerogel (c), paper (d), sponge (e), and non-woven fabric (f). (b) Reproduced with permission. (Cheng et?al., 2017c) Copyright 2017, American Chemical Society. (c) Reproduced with permission. (Li et?al., 2019c) Copyright 2019, American Chemical Society. (d) Reproduced with permission. (Wang et?al., 2010) Copyright 2010, American Chemical Society. (e) Reproduced with permission. (Peng et?al., 2016a) Copyright 2016, American Chemical Society. (f) Reproduced with permission. (Han et?al., 2018) Copyright 2018, American Chemical Society.
Fig.5  (a) Diagram of coating types for superhydrophobic membranes. The coating particles could be either synthesized (b) or ready particles (c). The scanning electron microscopy of pure cotton fabric (d) directly absorbs water (insert of d). After coating (e), the fabric shows a superhydrophobic surface with a high water contact angle (insert of e). The structure of particles resembles a marigold flower (f). (d–f) Reproduced with permission (Huang et?al., 2015). Copyright 2015, Royal Society of Chemistry.
Fig.6  (a) Diagram of performance evaluation of a superhydrophobic membrane. (b) Mirror effect of the superhydrophobic surface shows a silver-like appearance due to the air droplet in the surface void. (c) Droplet of several polar liquids. (d) Filtration process of the superhydrophobic membrane, before filtration shows droplet while after filtration shows no droplet. (b) Reproduced with permission. (Han et?al., 2016) Copyright 2018, Elsevier. (c) Reproduced with permission. (Zhou et?al., 2018) Copyright 2018, American Chemical Society. (d) Reproduced with permission. (Panda et?al., 2018) Copyright 2016, Elsevier.
Type of membranes Active materials Roughness enhancer Supporting materials Type of oil/water mixture Flowrate Separation efficiency Driving force Ref.
Cellulose superhydrophobic membrane Polystyrene SiO2 Filter paper Mixture of water/diesel oil Not reported >96% Gravity Wang et?al., 2010
1H,1H,2H,2H- perfluoro octyltri ethoxy silane and polyaniline FeCl3 Cotton fabric Emulsion of water/hexadecane Not reported >94% Gravity Zhou et?al., 2013
Methyl trimethoxysilane SiO2 CNF aerogel Emulsion of water/petroleum ether, /trichloro methane, /toluene, /hexane, /dichloro methane,/isooctane, /soybean oil, /gasoline, /motor oil, and /silicone oil 1910 L/m2/h >99% Gravity Zhou et?al., 2018
Poly (dimethylsiloxane) SiO2 Cotton fabric Emulsion of water/silicone oil emulsion Not reported 25%–99% Pressure (diaphragm pump) Han et?al., 2018
Cu Cu particle Non-wood pulp aerogel Mixture of emulsion of water/trichloro methane, /tetrachloromethane, /chlorobenzene Not reported >97% Gravity Li et?al., 2019c
1H,1H,2H,2H- perfluoro octyltri ethoxysilane TiO2 Cotton fabric Mixture of water/petroleum ether Not reported 98% Gravity Li et?al., 2015
Copolymerization of hexafluorobutylmethacrylate and 3-methacryl oxypropyl trimethoxy silane TiO2 Cotton fabric Mixture of water/dichloro methane,/bromobenzene, /n-hexane, /petroleum, /trichloro methane Not reported >98% Gravity Yang et?al., 2019b
Hexadecyl trimethoxysilane Fe3O4 Cellulose sponge Emulsion of water/toluene, /petroleum ether, /n-hexane, /paraffin oil, /cyclohexane 50–800 kg/m2/h/bar 95%–99% Pressure (0.02 MPa) Peng et?al., 2016a
Dodecyl trimethoxysilane Fly ash Cotton fabric Mixture of water/n-hexane, /toluene, /chloroform, /gasoline, /diesel Not reported 90.5%–96% Gravity Wang et?al., 2016a
Epoxidized soybean oil and hexadecyl trimethoxy silane CNC Cotton fabric Mixture of water/chloroform, /toluene, /hexane, /petroleum ether 55000–65000 L/m2/h 98%–99% Gravity Cheng et?al., 2018a
Triethoxy vinyl silane AlOOH Filter paper Emulsion of water/toluene, /chloroform, /diesel, /heptane 412–557 L/m2/h Not reported Gravity Yue et?al., 2018b
Trichloro (Octadecyl) silane None Cotton fabric Mixture of water/petroleum ether, /kerosene, /benzene Not reported 96.3%–99.2% Gravity Panda et?al., 2018
Stearic acid ZnO Cotton fabric Mixture of water/decane, /petroleum ether, /toluene, /chloroform, /silicon oil 480 L/m2/h for silicon oil and 23500–33800 L/m2/h for another 90%–99% Gravity Cheng et?al., 2017c
Cyanate ester TiO2 Cotton fabric Mixture of water/engine oil, /waste engine oil, /petrol, /diesel 7200 L/m2/h 98% Gravity Arumugam et?al., 2021
Polyamideamine Cellulose nanofiber aerogel Emulsion of water/mineral oil, /hexadecane, /canola oil, /peanut oil Not reported 98.60% Gravity He et?al., 2016
Octadecyl trichlorosilane Cellulose sponge Mixture of water/vegetable oil, /hexane, /cyclohexane, /chloroform Not reported 92%–97.5% Pressure (peristaltic pump) Meng et?al., 2020
Stearic acid Bacterial cellulose Non-bleached kraft pulp aerogel Mixture of water/dichloro methane mixture 1667.63 L/m2/h >95% Gravity Wang et?al., 2021a
Ooctadecanoyl group and grafting of poly (styrene-co- acrylonitrile) Filter paper Mixture of water/dichloro methane, /carbon tetrachloride, /chlorobenzene Not reported >98.5% Gravity Zhang et?al., 2020a
Polystyrene, stearic acid ZnO Cotton fabric Mixture of water/n-hexane Not reported 92% Gravity Zhang et?al., 2013
poly(methyl hydrogen) siloxane SiO2 Filter paper Mixture of water/diesel oil Not reported 96%–99% Gravity Zhang et?al., 2020b
Stearic acid, sebatic acid, epoxidized soybean oil ZnO Cotton fabric Mixture of water/decane, /petroleum ether, /toluene, /chloroform, /silicon oil 459 L/m2/h for silicon oil and 30000–40000 L/m2/h for another 97%–99% Gravity Cheng et?al., 2018b
Stearic acid Zn-Al Filter paper Mixture of water/toluene, /diesel oil, /petroleum ether, /chloroform, /heptane 1.38 L/m2/h >95% Gravity Yue et?al., 2017
Octadecyl trimethoxysilane TiO2 Cellulose sponge Chloroform/water mixture Not reported 83%–96.5% Gravity Zhang et?al., 2017a
Non cellulose superhydrophobic membrane ZnO Polyester fabric Hexane, isooctane, petroleoum, carbon tetrachloride, peanut oil Not reported 95%–98% Gravity Zhang et?al., 2019b
Carbon aerogel of banana peel and paper waste Emulsion of water/toluene, /hexadecane, /diesel, /chloroform 1480–8740 L/m2/h 99.60% Gravity Yue et?al., 2018a
Polyvinylbutyral nanofibrous Stainless steel meshes Emulsion of water/liquid paraffin ~5500 L/m2/h ~99.5% Gravity Song and Xu, 2016
Carbon nanotubes poly(vinylidene fluoride) fiber mat Emulsion of water/1,2-dichloroethane 1146.5?L/m2/h Not reported Gravity Wang et?al., 2021b
Mixture of water/dichloromethane, /chloroform, /1,2-dichloroethane 3500–8500 L/m2/h ~99% Gravity
SiO2 polyphenylene sulfide Emulsion of water/kerosene, /chloroform, /toluene 530–730?L/m2/h >99% Pressure (0.09 MPa) Fan et?al., 2019
Tab.2  Summary of superhydrophobic membranes
Fig.7  (a) Photo image of fish skin. (b) SEM image of mucus, and no mucus fish skin surface. (c) A drop of oil on the surface of fish skin shows a superoleophobic contact angle. (d) The contact angle value of fish skin under air and underwater with and without mucus. (e) Separation mechanism of superoleophobic membrane. Small droplets collide with each other (1). Small droplets collide with large droplets (2). Oil droplet is rejected (3) and water passes through the membrane (4). (a–d) Reproduced with permission. (Waghmare et?al., 2014) Copyright 2014, Springer Nature.
Fig.8  (a) Classification diagram of cellulose in superoleophobic membranes. Scanning electron microscopy (SEM) image of cellulose hydrogel coated mesh (b), cellulose hydrogel coated filter paper (c), filter paper with coated particle (d), and cellulose sponge (e). (b) Reproduced with permission. (Ao et?al., 2018) Copyright 2018, Elsevier. (c) Reproduced with permission. (Rohrbach et?al., 2014) Copyright 2014, The Royal Society of Chemistry. (d) Reproduced with permission. (Yang et?al., 2020) Copyright 2020, Springer. (e) Reproduced with permission (Wang et?al., 2015b). Copyright 2015, The Royal Society of Chemistry.
Fig.9  (a) Photo image of an oil droplet on a superoleophobic surface. (b) Illustration of separation performance evaluation. h is the maximum high of oil after separation was completed to measure breakthrough pressure. (c) The red line shows when a red laser beams through water containing microdroplets, while no red line appears for filtrates. (d) Before separation, the emulsion appears white in color with droplets of oil. However, after separation, the filtrate shows a clear appearance with no droplets detected. (a) and (d) Reproduced from (Wang et?al., 2017a) Copyright 2017, Springer Nature. (c) Reproduced with permission. (Cheng et?al., 2017b) Copyright 2017, Elsevier.
Type of Membranes Active materials Roughness enhancer Supporting materials Type of oil Flowrate Separation efficiency Driving force Ref.
Cellulose superoleophobic membrane Aqueous counter collison cellulose nanofiber Cellulose sponge Canola oil/water mixture 3.73×103 L/m2/h 98.50% Gravity Halim et?al., 2019
TEMPO-Oxidized cellulose nanofiber Cellulose sponge Canola oil/water mixture 166 L/m2/h 99.98% Gravity Halim et?al., 2019
TEMPO-Oxidized cellulose nanofiber Filter paper n-hexane/water emulsion 89.6 L/m2/h >99% Gravity Rohrbach et?al., 2014
Cellulose sponge Toluene/water emulsion 91 L/m2/h >99.94% Gravity Wang et?al., 2015b
Polyvinylpyrrolidone Compressed cotton n-hexane/, n-hexadecane/, isooctane/, diesel/water emulsion 15500–23900 L/m2/h/bar Not reported Pressure (100 kPa) Wang et?al., 2017a
Polyvinylpyrrolidone Cotton n-hexane/, n-hexadecane/, isooctane/, diesel/water mixture 61200–66800 L/m2/h Not reported Gravity Wang et?al., 2017a
Graphene oxide@ electrospun CNF n-hexane/water mixture 2850 L/m2/h 99.60% Gravity Ao et?al., 2017
Cellulose Nylon mesh Hexane/,
petro-ether/, gasoline/, diesel/water mixture
Not reported ~99.99% Gravity Lu et?al., 2014
Cellulose nanosheet Cellulose acetate Petroleum ether/, dichloromethane/, isooctane/, cyclohexane/water emulsion 1550–1591 L/m2/h/bar 96%–98% Pressure (80 kPa) Zhou et?al., 2014
Tunicate cellulose nanocrystal Nylon n-hexane/water emulsion 1549 L/m2/h/bar 99.99% Pressure (0.5 bar) Cheng et?al., 2017b
Polyvinylidene fluoride-co-hexafluoropropylene Cellulose Corn oil/, gasoline, crude oil/, motor oil/water emulsion 125–1781 L/m2/h/bar 90.1%–99.98% Pressure (65 kPa) Ahmed et?al., 2014
Tunicate CNC and TiO2 Tunicate CNC and TiO2 Cellulose ester membrane Hexadecane/, soybean oil/, pump oil/water emulsion 1728.8–1887.4 L/m2/h/bar 99% Pressure (0.05 kPa) Zhan et?al., 2018
Poly(N,N-dimethylamino-2-ethyl methacrylate) Poly(N,N-dimethyl amino-2
-ethyl methacrylate) grafted cellulose nanofiber aerogel
Petroleum ether/water emulsion 1000 L/m2/h >99% Gravity Li et?al., 2019b
Printed cellulose mat Hexadecane/, cyclohexane/, poly (dimethyl siloxane)/, xylene/water mixture ~160000 L/m2/h 92%–99% Gravity Koh et?al., 2019
Polyvinyl alcohol hydrogel Filter paper Hexane/, diesel/, gasoline/water emulsion 43–63 L/m2/h >99% Gravity Fan et?al., 2015
Guar gum hydrogel Cotton fabric Silicone oil/, canola oil/, cyclohexane/water mixture 1467 L/m2/h 97.5%–99.5% Gravity Dai et?al., 2019
Cellulose, graphene oxide Cellulose aerogel Petroleum ether/, dodecane/, cyclohexane/, toluene/, soy oil/, hexane/, dichloro methane/water mixture 15000–22900 L/m2/h >99% Gravity Fu et?al., 2020
Cellulose, polyvinyl alcohol Filter paper Hexane/, chloroform/, cyclohexane/, dichloro methane/, toluene/water emulsion 37–68 L/m2/h 98.74%–99.99% Gravity Xu et?al., 2019
ZnO Cotton fabric Dichloro methane/, dichloroethane/, chloroform/, chlorobenzene/, n-hexane/, petroleum ether/water mixture 10000–18500 L/m2/h >97% Gravity Gao et?al., 2018
Cellulose/chitosan aerogel Toluene/water emulsion 1100–1175 kg/m2/h 96.50% Gravity Peng et?al., 2016b
Tunicate chemically crosslinked Filter paper Hexane/, petroleum ether/, and soybean oil/water emulsion 238–317 L/m2/h/bar 99.99% Pressure (0.5 bar) Huang et?al., 2019b
Cellulose hydrogel Metal mesh Hexane/, cyclohexane/, petroleum ether/, paraffin liquid,/ pump oil/, xylene/water mixture 12885 L/m2/h ~99% Gravity Ao et?al., 2018
Cellulose micro/ nanofiber Cyclohexane/, n-hexane/, trichloromethane/, dichloromethane/, soybean oil/water emulsion 150–180 L/m2/h 97%–98.5% Pressure (5 kPa) Li et?al., 2021
Cellulose hydrogel Stainless steel mesh Soybean oil/, decane/, petroleum ether/, toluene/water mixture 31428–38064 L/m2/h 98.89%–99.96% Gravity Xie et?al., 2020
Polydopamine BaSO4 Filter paper Petroleum ether/, hexane/, toluene/, soybean oil/, dichloroethane/water mixtures 225–900 L/m2/h >98% Gravity Yang et?al., 2020
Bacterial cellulose nanofiber n-hexadecane/water emulsion 9.09 L/m2/h/bar ~99% Pressure (5.5 bar) Zhuang et?al., 2020
carbon nanotube-polyvinyl alcohol Cellulose membrane Hexadecane/, soybean oil/, Commercial cutting fluid emulsion 83–944 L/m2/h/bar 91%–96.7% Pressure (0.1 bar) Yi et?al., 2019
Non-cellulose superoleophobic membrane Freeze drying CNF chitosan Soybean oil/water mixture 12600–13680 L/m2/h Not reported Gravity Wang et?al., 2017c
Alginate graphene oxide Kerosene/water mixture 13680 L/m2/h 99.60% Gravity Li et?al., 2017b
Guar gum Stainless steel mesh Cyclohexane/, canola oil/, crude oil/, silicone oil/water mixture 2800–2850 L/m2/h 98.75%–99.7% Gravity Dai et?al., 2017
Chitosan Silica Polyvinylidene fluoride Gasoline/water emulsion Not reported >99% Pressure (0.03 MPa) Liu et?al., 2016b
Chitosan- Sodium perfluorononanoate Fe3PO4 Melamine sponge Soybean oil/, pump oil/, silicone oil/water mixture Not reported 94%–97.6% Gravity Su et?al., 2017
Graphene oxide TiO2 PVDF membrane Industrial oily wastewater, hexadecane/water emulsion 370 L/m2/h/bar 70.20% Pressure (0.2 bar) Wu et?al., 2018
Catechol/chitosan PVDF membrane n-hexadecane/, crude oil/, peanut oil/water emulsion 9000–12000 L/m2/h/bar 88%–92% Pressure (20 kPa) Zhao et?al., 2021
Branched poly(ethylenimine), ammonium polyphosphate, phytic acid TiO2 Polyethylene terephthalate fabric Kerosene/, hexane/, heptane/, diesel/, toluene/water emulsion 550–800 L/m2/h/bar ~99% Pressure (not reported) Peng et?al., 2020
Hexadecane/, decane/, hexane/, toluene/water mixtures 32.5 L/m2/s ~98% Gravity
Tab.3  Summary of superoleophobic membranes
Fig.10  (a) Photo image of water on the surface of a Salvinia leaf. (b) SEM image of Salvinia fur shows its superhydrophobic properties. However, a close look reveals its hydrophilic feature in that the drop’s surface attracts to the top of the fur (c). (d) SEM image of Salvania fur with its hydrophilic function on the top and hydrophobic function on the bottom. (e) Photo image of Namib beetle. (f) Namib beetle’s skin shows hydrophilic and hydrophobic feature. A Janus surface shows superhydrophilic on one side (g) and superhydrophobic on another side (h). (a–d) Reproduced with permission. (Barthlott et?al., 2010) Copyright 2010, Wiley-VCH. (e and f) Reproduced with permission. (Parker and Lawrence, 2001) Copyright 2001, Nature Publishing Group. (g and h) Reproduced with permission. (Wang et?al., 2016e) Copyright 2016, Wiley-VCH.
Fig.11  (a) Proposed type of Janus membrane. (b) Separation mechanism of A and B types. (b) Reproduced with permission. (Yue et?al., 2018c) Copyright 2018, Springer Nature and Reproduced with permission. (Lv et?al., 2019) Copyright 2019, American Chemical Society.
Fig.12  Separation mechanism of A on B and B on A with A as hydrophobic and B as hydrophilic. A on B is suited to separating water-in-oil emulsions when the A layer faces the feed (a) and no penetration occurs when the B layer faces the feed (b). B on A type is suited to separating oil-in-water emulsions when the B layer faces the feed (c) but no penetration occurs when the A layer faces the feed (d).
Fig.13  Schematic diagram of Janus fabrication method for single-face electrospinning (a), sequentially vacuum filtration (b), vapor treatment coating (c), single-faced photo crosslinking (d), single-faced coating (e), surface modification (f) and molecular migration (g).
Active materials Roughness enhancer Supporting materials Type of oil Flowrate Separation efficiency Driving force Ref.
Hydrophobic part Hydrophilic part
Poly(dimethyl siloxane) Poly (N,Ndimethyl amino ethylmethacrylate) None Cotton fabric Toluene/, hexadecane/, chlorobenzene/water emulsion 490–6700 L/m2/h Not reported Gravity Wang et?al., 2016d
Poly(dimethyl siloxane) Poly (N,Ndimethyl amino ethylmethacrylate) None Cotton fabric Toluene/, hexane/, hexadecane/, chlorobenzene/water emulsion 1500–10500 L/m2/h Not reported Gravity Wang et?al., 2016e
Sodium laurate MnO2 nanowire ZnO nanorod and MnO2 nanowire Filter paper Emulsion of water/hexadecane, water/toluene, water/chloroform, /diesel 1590–8840 L/m2/h/bar 99.40% Pressure (0.03 MPa) Yue et?al., 2018c
Hexadecane/water, toluene/, chloroform/, diesel/water emulsions 8380–13740 L/m2/h/bar 99.80% Pressure (0.03 MPa)
Methyl trimethoxy silane crosslinked cellulose nanofiber 3-glycidoxy propyl trimethoxy silane crosslinked cellulose nanofiber None CNF aerogel Mixture of water/toluene, /dichloromethane, /tetrahydrofuran, /n-hexane 1200–3200 L/m2/h 40%–99% Gravity Agaba et?al., 2021
None Toluene/, dichloromethane/, tetrahydrofuran/, n-hexane/ water mixture 1400–2600 L/m2/h 50%–90% Gravity
Poly lactic acid, nano clay Cellulose Nano clay Cotton fabric Diesel/, petrol/, n-hexane/, toluene/, xylene/water mixture 11000–32000 L/m2/h 95%–99% Gravity Gore et?al., 2018
Octadecyl triethoxysilane MnO2 Co(CO3)·0.5OH·0.11 H2O nanoneedle Cotton fabric Hexane/, toluene/, dodecane/, diesel/water mixture 7187 L/m2/h ~98% Gravity Hu et?al., 2020
Mixture of water/dichloromethane, /carbon tetrachloride 70200–77760 L/m2/h ~98% Gravity
Stearic acid Cellulose Ag nanoparticle Cellulose membrane Toluene/, carbon tetrachloride/, hexane/, chloroform/, dichloromethane/water emulsion 623.5–685.2L/m2/h 95.62%–97.25% Gravity Lv et?al., 2019
Water/toluene, /carbon tetrachloride, /hexane, /chloroform, /dichloromethane emulsion 296.6–345.2 L/m2/h 95.25%–98.32% Gravity
Tab.4  Summary of Janus membranes
Manufacturer Material Type of oil Membrane specification Flux Rejection/ Separation efficiency Driving force Ref.
EMD Millipore Corporation, USA Not reported Industrial oily wastewater MWCO 30 kDa 46 L/m2/ h/bar 65.30% Pressure (0.2 bar) Wu et?al., 2018
Merck Millipore CO., LTD, Germany PVDF membrane Commercial cutting fluid emulsion 0.1 μm 36–163 L/m2/h/bar 91.30% Pressure (0.1 bar) Yi et?al., 2019
Pall Corporation, USA PES membrane Commercial cutting fluid emulsion 0.2 μm 39–216 L/m2/h/bar 85.30%
PCI-Memtech, UK PVDF Ultrafiltration membrane POME MWCO 200 kDa 20–70 L/m2/h 17% Pressure (2 bar) Ahmad et?al., 2006
PCI-Memtech, UK TFC Reverse Osmosis POME 99% NaCl retension 40–80 L/m2/h 99.30% Pressure (45 bar)
Laboratory fabrication, China PVDF ultrafiltration membranes hydrophilized by Al2O3 nanoparticles Wastewater from polymer flooding Not reported 45–150 L/m2/h 89.5%–94% Pressure (0.2 MPa) Xu et?al., 2016
Laboratory fabrication, China PVDF ultrafiltration membranes hydrophilized by Al2O3 nanoparticles the Daqing oil field wastewater MWCO 35 kDa 150–170 L/m2/h ~98% Pressure (0.1 MPa) Li et?al., 2006
DOW CO., Denmark Polysulfone Industrial oily wastewaters MWCO 30 kDa 32.1 L/m2/h 97% Pressure (3 bar) Salahi et?al., 2010
Sepromembranes, USA Polyacrilonitrile MWCO 20 kDa 53.7 L/m2/h 99.70%
Osmonics, USA Polyacrilonitrile MWCO 100 kDa 96.2 L/m2/h 97.20%
Alfa Laval, Denmark Polysulfone 0.1 μm 76 L/m2/h 95%
DOW CO., Denmark Polysulfone 0.2 μm 73.1 L/m2/h 66.30%
Tab.5  Commercial and non-superoleophobic, non-superhydrophobic, and non-Janus membrane performance
AlOOH Aluminum hydroxide oxide
BaSO4 Barium sulfate
BOD Biological oxygen demand
CNC We included the cellulose nanocrystal
CNF Cellulose nanofiber
PEI poly(ethyleneimine)
CNT Carbon nanotube
CO2 Carbon dioxide
COD Chemical oxygen demand
CTAB Hexadecyltrimethylammonium bromide
Cu Copper
ESO Epoxidized soybean oil
FAS (pentaflurophenyl)triethoxy silane
Fe3O4 Iron oxide
FTIR Fourier transfer infrared
GG Guar Gum
GO Graphene oxide
HCl Hydrogen chloride
HEMA 2-hydroxyethyl methacrylate
MBA N'-methylenebisacrylamide
MMA Methyl methacrylate
MWCO Molecular weight cut off
Na2SO4·10H2O Sodium sulfate decahydrate
Na3PO4 Trisodium phosphate
NaCl Sodium chloride
NaClO2 Sodium chlorite
NaIO4 Sodium periodate
NaOH Sodium hidroxyde
OCA Oil contact angle
OTS Octadecyl silane
PANI polyaniline
PCEA poly(2-cinnamoyloxyethyl acrylate)
PDMAEMA poly(N,N dimethyl aminoethyl methacrylate)
PDMS poly(dimethylsiloxane)
PDMS-b-PEO poly(dimethylsiloxane)-b-poly(ethylene oxide)
PEI poly(ethyleneimine)
pH Potential of hydrogen or power of hydrogen
POME Palm oil mill effluent
POTS 1H,1H,2H,2H-perfluoro octyl trichlorosilane
PS Polystyrene
PTES 1H,1H,2H,2H-perfluorooctyltriethoxysilane (C14H19F13O3Si)
PVDF poly(vinylidene fluoride)
PVDF-HFP polyvinylidene fluoride-co-hexafluoropropylene
RH Relative humidity
SDS Sodium dodecyl sulfate
SEM Scanning electron microscopy
SiO2 silicon oxide
TEMPO 2,2,6,6-tetramethylpiperidine-1-oxylradical
TG-TGA Thermogravimetric analysis or thermal gravimetric analysis
THF tetrahydrofuran
TiO2 Titanium dioxide
TMSPMA trimethoxysilyl propyl methacrylate
TOCNF TEMPO-oxidized cellulose nanofibril
Tween 80 polysorbate 80 (Tween 80)
UV Ultra-Violet
WCO Water contact angle
XPS Photoelectron spectroscopy
XRD X-Ray Diffraction
ZnO Zinc Oxide
  
1 A Agaba, I Marriam, M Tebyetekerwa, W Yuanhao (2021). Janus hybrid sustainable all-cellulose nanofiber sponge for oil-water separation. International Journal of Biological Macromolecules, 185: 997–1004
https://doi.org/10.1016/j.ijbiomac.2021.07.027 pmid: 34237368
2 A L Ahmad, M F Chong, S Bhatia, S Ismail (2006). Drinking water reclamation from palm oil mill effluent (POME) using membrane technology. Desalination, 191(1–3): 35–44
https://doi.org/10.1016/j.desal.2005.06.033
3 F E Ahmed, B S Lalia, N Hilal, R Hashaikeh (2014). Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination, 344: 48–54
https://doi.org/10.1016/j.desal.2014.03.010
4 A P Almeida, J Oliveira, S N Fernandes, M H Godinho, J P Canejo (2020). All-cellulose composite membranes for oil microdroplet collection. Cellulose, 27(8): 4665–4677
https://doi.org/10.1007/s10570-020-03077-x
5 C Ao, R Hu, J Zhao, X Zhang, Q Li, T Xia, W Zhang, C Lu (2018). Reusable, salt-tolerant and superhydrophilic cellulose hydrogel-coated mesh for efficient gravity-driven oil/water separation. Chemical Engineering Journal, 338: 271–277
https://doi.org/10.1016/j.cej.2018.01.045
6 C Ao, W Yuan, J Zhao, X He, X Zhang, Q Li, T Xia, W Zhang, C Lu (2017). Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohydrate Polymers, 175: 216–222
https://doi.org/10.1016/j.carbpol.2017.07.085 pmid: 28917859
7 O Arslan, Z Aytac, T Uyar (2016). Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Applied Materials & Interfaces, 8(30): 19747–19754
https://doi.org/10.1021/acsami.6b05429 pmid: 27398738
8 V Arumugam, R Kanthapazham, D A Zherebtsov, K Kalimuthu, P Pichaimani, A Muthukaruppan (2021). Fluorine free TiO2/cyanate ester coated cotton fabric with low surface free energy and rough surface for durable oil–water separation. Cellulose, 28(8): 4847–4863
https://doi.org/10.1007/s10570-021-03822-w
9 Z Ashrafi, Z Hu, L Lucia, W Krause (2021). Bacterial superoleophobic fibrous matrices: A naturally occurring liquid-infused system for oil-water separation. Langmuir, 37(8): 2552–2562
https://doi.org/10.1021/acs.langmuir.0c02717 pmid: 33605736
10 W Barthlott, T Schimmel, S Wiersch, K Koch, M Brede, M Barczewski, S Walheim, A Weis, A Kaltenmaier, A Leder, H F Bohn (2010). The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Advanced Materials, 22(21): 2325–2328
https://doi.org/10.1002/adma.200904411 pmid: 20432410
11 H Bellanger, T Darmanin, E Taffin de Givenchy, F Guittard (2014). Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories. Chemical Reviews, 114(5): 2694–2716
https://doi.org/10.1021/cr400169m pmid: 24405122
12 B Bhushan, M Nosonovsky (2010). The rose petal effect and the modes of superhydrophobicity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,368(1929): 4713–4728
13 P S Brown, B Bhushan (2016). Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374(2073): 20160135
https://doi.org/10.1098/rsta.2016.0135 pmid: 27354732
14 A B D Cassie, S Baxter (1944). Wettability of porous surfaces. Transactions of the Faraday Society, 40: 546–551
https://doi.org/10.1039/tf9444000546
15 T G Cha, J W Yi, M W Moon, K R Lee, H Y Kim (2010). Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Langmuir, 26(11): 8319–8326
https://doi.org/10.1021/la9047402 pmid: 20151676
16 X Chen, J A Weibel, S V Garimella (2015). Exploiting microscale roughness on hierarchical superhydrophobic copper surfaces for enhanced dropwise condensation. Advanced Materials Interfaces, 2(3): 1400480
https://doi.org/10.1002/admi.201400480
17 G Cheng, M Liao, D Zhao, J Zhou (2017a). Molecular understanding on the underwater oleophobicity of self-assembled monolayers: zwitterionic versus nonionic. Langmuir, 33(7): 1732–1741
https://doi.org/10.1021/acs.langmuir.6b03988 pmid: 28122450
18 Q Cheng, D Ye, C Chang, L Zhang (2017b). Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. Journal of Membrane Science, 525: 1–8
https://doi.org/10.1016/j.memsci.2016.11.084
19 Q Y Cheng, X P An, Y D Li, C L Huang, J B Zeng (2017c). Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation. ACS Sustainable Chemistry & Engineering, 5(12): 11440–11450
https://doi.org/10.1021/acssuschemeng.7b02549
20 Q Y Cheng, C S Guan, M Wang, Y D Li, J B Zeng (2018a). Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydrate Polymers, 199: 390–396
https://doi.org/10.1016/j.carbpol.2018.07.046 pmid: 30143143
21 Q Y Cheng, M C Liu, Y D Li, J Zhu, A K Du, J B Zeng (2018b). Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation. Polymer Testing, 66: 41–47
https://doi.org/10.1016/j.polymertesting.2018.01.005
22 W K Cho, I S Choi (2008). Fabrication of hairy polymeric films inspired by geckos: Wetting and high adhesion properties. Advanced Functional Materials, 18(7): 1089–1096
https://doi.org/10.1002/adfm.200701454
23 Z Chu, Y Feng, S Seeger (2015). Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie (International ed. in English), 54(8): 2328–2338
https://doi.org/10.1002/anie.201405785 pmid: 25425089
24 P D’Odorico, K F Davis, L Rosa, J A Carr, D Chiarelli, J Dell’Angelo, J Gephart, G K MacDonald, D A Seekell, S Suweis, M C Rulli (2018). The global food–energy–water nexus. Reviews of Geophysics, 56(3): 456–531
https://doi.org/10.1029/2017RG000591
25 L Dai, T Cheng, Y Wang, B Wang, C Duan, H Ke, Y Ni (2019). A self-assembling guar gum hydrogel for efficient oil/water separation in harsh environments. Separation and Purification Technology, 225: 129–135
https://doi.org/10.1016/j.seppur.2019.05.070
26 L Dai, B Wang, X An, L Zhang, A Khan, Y Ni (2017). Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohydrate Polymers, 169: 9–15
https://doi.org/10.1016/j.carbpol.2017.03.096 pmid: 28504182
27 H J Ensikat, P Ditsche-Kuru, C Neinhuis, W Barthlott (2011). Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2(1): 152–161
https://doi.org/10.3762/bjnano.2.19 pmid: 21977427
28 J B Fan, Y Song, S Wang, J Meng, G Yang, X Guo, L Feng, L Jiang (2015). Directly coating hydrogel on filter paper for effective oil–water separation in highly acidic, alkaline, and salty environment. Advanced Functional Materials, 25(33): 5368–5375
https://doi.org/10.1002/adfm.201501066
29 T Fan, J Miao, Z Li, B Cheng (2019). Bio-inspired robust superhydrophobic-superoleophilic polyphenylene sulfide membrane for efficient oil/water separation under highly acidic or alkaline conditions. Journal of Hazardous Materials, 373: 11–22
https://doi.org/10.1016/j.jhazmat.2019.03.008 pmid: 30901681
30 T Fan, Q Qian, Z Hou, Y Liu, M Lu (2018). Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method. Carbohydrate Polymers, 200: 63–71
https://doi.org/10.1016/j.carbpol.2018.07.040 pmid: 30177209
31 J Feng, S T Nguyen, Z Fan, H M Duong (2015). Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chemical Engineering Journal, 270: 168–175
https://doi.org/10.1016/j.cej.2015.02.034
32 B Fu, Q Yang, F Yang (2020). Flexible underwater oleophobic cellulose aerogels for efficient oil/water separation. ACS Omega, 5(14): 8181–8187
https://doi.org/10.1021/acsomega.0c00440 pmid: 32309728
33 F Foroughi, E Rezvani Ghomi, F Morshedi Dehaghi, R Borayek, S Ramakrishna (2021). A review on the life cycle assessment of cellulose: From properties to the potential of making it a low carbon material. Materials (Basel), 14(4): 714
https://doi.org/10.3390/ma14040714 pmid: 33546379
34 X Gao, G Wen, Z Guo (2018). Durable superhydrophobic and underwater superoleophobic cotton fabrics growing zinc oxide nanoarrays for application in separation of heavy/light oil and water mixtures as need. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 559: 115–126
https://doi.org/10.1016/j.colsurfa.2018.09.041
35 P M Gore, M Dhanshetty, K Balasubramanian (2016). Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Advances, 6(112): 111250–111260
https://doi.org/10.1039/C6RA24106A
36 P M Gore, B Kandasubramanian (2018). Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(17): 7457–7479
https://doi.org/10.1039/C7TA11260B
37 J Gu, P Xiao, P Chen, L Zhang, H Wang, L Dai, L Song, Y Huang, J Zhang, T Chen (2017). Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation. ACS Applied Materials & Interfaces, 9(7): 5968–5973
https://doi.org/10.1021/acsami.6b13547 pmid: 28135056
38 X Guo, C Li, C Li, T Wei, L Tong, H Shao, Q Zhou, L Wang, Y Liao (2019). G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance. Frontiers of Environmental Science & Engineering, 13(6): 81
https://doi.org/10.1007/s11783-019-1165-9
39 I Gupta, C Rai, C Sondergeld (2019). Study impact of sample treatment and in situ fluids on shale wettability measurement using NMR. Journal of Petroleum Science Engineering, 176: 352–361
https://doi.org/10.1016/j.petrol.2019.01.048
40 P Gupta, B Kandasubramanian (2017). Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil–water separation. ACS Applied Materials & Interfaces, 9(22): 19102–19113
https://doi.org/10.1021/acsami.7b03313 pmid: 28525273
41 A Halim, K H Lin, T Enomae (2020a). Biomimicking properties of cellulose nanofiber under ethanol/water mixture. Scientific Reports, 10(1): 21070
https://doi.org/10.1038/s41598-020-78100-z pmid: 33273623
42 A Halim, Y Xu, T Enomae (2020b). Fabrication of cellulose sponge: effects of drying process and cellulose nanofiber deposition on the physical strength. ASEAN Journal of Chemical Engineering, 20(1): 1–10
https://doi.org/10.22146/ajche.51313
43 A Halim, Y Xu, K H Lin, M Kobayashi, M Kajiyama, T Enomae (2019). Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane. Separation and Purification Technology, 224: 322–331
https://doi.org/10.1016/j.seppur.2019.05.005
44 S Han, Q Sun, H Zheng, J Li, C Jin (2016). Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydrate Polymers, 136: 95–100
https://doi.org/10.1016/j.carbpol.2015.09.024 pmid: 26572333
45 S W Han, H J Kim, T G Woo, J H Jeong, B J Cha, Y D Kim (2018). Superhydrophobic fabric resistant to an aqueous surfactant solution as well as pure water for the selective removal of spill oil. ACS Applied Nano Materials, 1(9): 5158–5168
https://doi.org/10.1021/acsanm.8b01223
46 X He, T Chen, T Jiang, C Wang, Y Luan, P Liu, Z Liu (2021). Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers. Carbohydrate Polymers, 260: 117790
https://doi.org/10.1016/j.carbpol.2021.117790 pmid: 33712138
47 Z He, X Zhang, W Batchelor (2016). Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Advances, 6(26): 21435–21438
https://doi.org/10.1039/C5RA27413C
48 C T Hsieh, J P Hsu, H H Hsu, W H Lin, R S Juang (2016). Hierarchical oil–water separation membrane using carbon fabrics decorated with carbon nanotubes. Surface and Coatings Technology, 286: 148–154
https://doi.org/10.1016/j.surfcoat.2015.12.035
49 L Hu, Y Liu, Z Wang, Y Zhou, Y Zhang, Y Liu, B Li (2020). A general in situ deposition strategy for synthesis of Janus composite fabrics with Co(CO3)0.5OH·0.11H2O nanoneedles for oil–water separation. ACS Applied Nano Materials, 3(4): 3779–3786
https://doi.org/10.1021/acsanm.0c00464
50 J Huang, S Lyu, Z Chen, S Wang, F Fu (2019a). A facile method for fabricating robust cellulose nanocrystal/SiO2 superhydrophobic coatings. Journal of Colloid and Interface Science, 536: 349–362
https://doi.org/10.1016/j.jcis.2018.10.045 pmid: 30380434
51 J Huang, S Lyu, F Fu, H Chang, S Wang (2016). Preparation of superhydrophobic coating with excellent abrasion resistance and durability using nanofibrillated cellulose. RSC Advances, 6(108): 106194–106200
https://doi.org/10.1039/C6RA23447J
52 J Y Huang, S H Li, M Z Ge, L N Wang, T L Xing, G Q Chen, X F Liu, S S Al-Deyab, K Q Zhang, T Chen, Y K Lai (2015). Robust superhydrophobic TiO2@ fabrics for UV shielding, self-cleaning and oil–water separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(6): 2825–2832
https://doi.org/10.1039/C4TA05332J
53 S Huang, D Wang (2017). A simple nanocellulose coating for self-cleaning upon water action: molecular design of stable surface hydrophilicity. Angewandte Chemie (International ed. in English), 56(31): 9053–9057
https://doi.org/10.1002/anie.201703913 pmid: 28561309
54 X Huang, I Gates (2020). Apparent contact angle around the periphery of a liquid drop on roughened surfaces. Scientific Reports, 10(1): 8220
https://doi.org/10.1038/s41598-020-65122-w pmid: 32427853
55 Y Huang, H Zhan, D Li, H Tian, C Chang (2019b). Tunicate cellulose nanocrystals modified commercial filter paper for efficient oil/water separation. Journal of Membrane Science, 591: 117362
https://doi.org/10.1016/j.memsci.2019.117362
56 H E Jeong, M K Kwak, C I Park, K Y Suh (2009). Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography. Journal of Colloid and Interface Science, 339(1): 202–207
https://doi.org/10.1016/j.jcis.2009.07.020 pmid: 19656522
57 W Jiang, M Mao, W Qiu, Y Zhu, B Liang (2017). Biomimetic superhydrophobic engineering metal surface with hierarchical structure and tunable adhesion: Design of microscale pattern. Industrial & Engineering Chemistry Research, 56(4): 907–919
https://doi.org/10.1021/acs.iecr.6b03936
58 M Kettunen, R J Silvennoinen, N Houbenov, A Nykänen, J Ruokolainen, J Sainio, V Pore, M Kemell, M Ankerfors, T Lindström, M Ritala, R H A Ras, O Ikkala (2011). Photoswitchable superabsorbency based on nanocellulose aerogels. Advanced Functional Materials, 21(3): 510–517
https://doi.org/10.1002/adfm.201001431
59 M Z Khan, V Baheti, J Militky, A Ali, M Vikova (2018). Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy(octadecyl)silane coated cotton fabrics. Carbohydrate Polymers, 202: 571–580
https://doi.org/10.1016/j.carbpol.2018.08.145 pmid: 30287038
60 K M Kibler, D Reinhart, C Hawkins, A M Motlagh, J Wright (2018). Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Management (New York, N.Y.), 74: 52–62
https://doi.org/10.1016/j.wasman.2018.01.014 pmid: 29366796
61 D Kim, S Livazovic, G Falca, S P Nunes (2019). Oil–water separation using membranes manufactured from cellulose/ionic liquid solutions. ACS Sustainable Chemistry & Engineering, 7(6): 5649–5659
https://doi.org/10.1021/acssuschemeng.8b04038
62 J J Koh, G J H Lim, X Zhou, X Zhang, J Ding, C He (2019). 3D-printed anti-fouling cellulose mesh for highly efficient oil/water separation applications. ACS Applied Materials & Interfaces, 11(14): 13787–13795
https://doi.org/10.1021/acsami.9b01753 pmid: 30884229
63 J T Korhonen, T Huhtamäki, O Ikkala, R H Ras (2013). Reliable measurement of the receding contact angle. Langmuir, 29(12): 3858–3863
https://doi.org/10.1021/la400009m pmid: 23451825
64 S Li, J Huang, Z Chen, G Chen, Y Lai (2017a). A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(1): 31–55
https://doi.org/10.1039/C6TA07984A
65 S Li, J Huang, M Ge, C Cao, S Deng, S Zhang, G Chen, K Zhang, S S Al–Deyab, Y Lai (2015). Robust flower-like TiO2@ cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation. Advanced Materials Interfaces, 2(14): 1500220
https://doi.org/10.1002/admi.201500220
66 Y Li, S Dai, J John, K R Carter (2013). Superhydrophobic surfaces from hierarchically structured wrinkled polymers. ACS Applied Materials & Interfaces, 5(21): 11066–11073
https://doi.org/10.1021/am403209r pmid: 24131534
67 Y Li, H Zhang, M Fan, P Zheng, J Zhuang, L Chen (2017b). A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments. Scientific Reports, 7(1): 46379
https://doi.org/10.1038/srep46379 pmid: 28397862
68 Y Li, H Zhang, C Ma, H Yin, L Gong, Y Duh, R Feng (2019a). Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation. Carbohydrate Polymers, 226: 115279
https://doi.org/10.1016/j.carbpol.2019.115279 pmid: 31582078
69 Y Li, L Zhu, N Grishkewich, K C Tam, J Yuan, Z Mao, X Sui (2019b). CO2-responsive cellulose nanofibers aerogels for switchable oil–water separation. ACS Applied Materials & Interfaces, 11(9): 9367–9373
https://doi.org/10.1021/acsami.8b22159 pmid: 30735345
70 Y S Li, L Yan, C B Xiang, L J Hong (2006). Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes. Desalination, 196(1–3): 76–83
https://doi.org/10.1016/j.desal.2005.11.021
71 Z Li, L Zhong, T Zhang, F Qiu, X Yue, D Yang (2019c). Sustainable, flexible, and superhydrophobic functionalized cellulose aerogel for selective and versatile oil/water separation. ACS Sustainable Chemistry & Engineering, 7(11): 9984–9994
https://doi.org/10.1021/acssuschemeng.9b01122
72 Z Li, F Qiu, X Yue, Q Tian, D Yang, T Zhang (2021). Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation. Journal of Environmental Chemical Engineering, 9(5): 105857
https://doi.org/10.1016/j.jece.2021.105857
73 H Liu, S W Gao, J S Cai, C L He, J J Mao, T X Zhu, Z Chen, J Y Huang, K Meng, K Q Zhang, S S Al-Deyab, Y K Lai (2016a). Recent progress in fabrication and applications of superhydrophobic coating on cellulose-based substrates. Materials (Basel), 9(3): 124
https://doi.org/10.3390/ma9030124 pmid: 28773253
74 J Liu, P Li, L Chen, Y Feng, W He, X Lv (2016b). Modified superhydrophilic and underwater superoleophobic PVDF membrane with ultralow oil-adhesion for highly efficient oil/water emulsion separation. Materials Letters, 185: 169–172
https://doi.org/10.1016/j.matlet.2016.08.124
75 K Liu, M Cao, A Fujishima, L Jiang (2014). Bio-inspired titanium dioxide materials with special wettability and their applications. Chemical Reviews, 114(19): 10044–10094
https://doi.org/10.1021/cr4006796 pmid: 24956456
76 M Liu, S Wang, L Jiang (2013). Bioinspired multiscale surfaces with special wettability. MRS Bulletin, 38(5): 375–382
https://doi.org/10.1557/mrs.2013.100
77 M Liu, S Wang, Z Wei, Y Song, L Jiang (2009). Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials, 21(6): 665–669
https://doi.org/10.1002/adma.200801782
78 X Liu, J Zhou, Z Xue, J Gao, J Meng, S Wang, L Jiang (2012). Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Advanced Materials, 24(25): 3401–3405
https://doi.org/10.1002/adma.201200797 pmid: 22648962
79 F Lu, Y Chen, N Liu, Y Cao, L Xu, Y Wei, L Feng (2014). A fast and convenient cellulose hydrogel-coated colander for high-efficiency oil–water separation. RSC Advances, 4(61): 32544–32548
https://doi.org/10.1039/C4RA04464A
80 Y Lv, Q Li, Y Hou, B Wang, T Zhang (2019). Facile preparation of an asymmetric wettability Janus cellulose membrane for switchable emulsions’ separation and antibacterial property. ACS Sustainable Chemistry & Engineering, 7(17): 15002–15011
https://doi.org/10.1021/acssuschemeng.9b03450
81 Y Lv, X Xi, L Dai, S Tong, Z Chen (2021). Hydrogel as a superwetting surface design material for oil/water separation: a review. Advanced Materials Interfaces, 8(7): 2002030
https://doi.org/10.1002/admi.202002030
82 Q Ma, H Cheng, A G Fane, R Wang, H Zhang (2016). Recent development of advanced materials with special wettability for selective oil/water separation. Small, 12(16): 2186–2202
https://doi.org/10.1002/smll.201503685 pmid: 27000640
83 A Mautner, K Y Lee, P Lahtinen, M Hakalahti, T Tammelin, K Li, A Bismarck (2014). Nanopapers for organic solvent nanofiltration. Chemical Communications, 50(43): 5778–5781
https://doi.org/10.1039/C4CC00467A pmid: 24752201
84 X Meng, Y Dong, Y Zhao, L Liang (2020). Preparation and modification of cellulose sponge and application of oil/water separation. RSC Advances, 10(68): 41713–41719
https://doi.org/10.1039/D0RA07910C
85 W Miao, D Jiao, C Wang, S Han, Q Shen, J Wang, X Han, T Hou, J Liu, Y Zhang (2020). Ethanol-induced one-step fabrication of superhydrophobic-superoleophilic poly (vinylidene fluoride) membrane for efficient oil/water emulsions separation. Journal of Water Process Engineering, 34: 101121
https://doi.org/10.1016/j.jwpe.2019.101121
86 J C Michel, L M Riviere, M N Bellon–Fontaine (2001). Measurement of the wettability of organic materials in relation to water content by the capillary rise method. European Journal of Soil Science, 52(3): 459–467
https://doi.org/10.1046/j.1365-2389.2001.00392.x
87 D J Miller, D R Dreyer, C W Bielawski, D R Paul, B D Freeman (2017). Surface modification of water purification membranes. Angewandte Chemie (International ed. in English), 56(17): 4662–4711
https://doi.org/10.1002/anie.201601509 pmid: 27604844
88 D Murakami, H Jinnai, A Takahara (2014). Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces. Langmuir, 30(8): 2061–2067
https://doi.org/10.1021/la4049067 pmid: 24494786
89 M A Nasution, D S Wibawa, T Ahamed, R Noguchi (2018). Comparative environmental impact evaluation of palm oil mill effluent treatment using a life cycle assessment approach: A case study based on composting and a combination for biogas technologies in North Sumatera of Indonesia. Journal of Cleaner Production, 184: 1028–1040
https://doi.org/10.1016/j.jclepro.2018.02.299
90 S Nishimoto, B Bhushan (2013). Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 3(3): 671–690
https://doi.org/10.1039/C2RA21260A
91 S Noamani, S Niroomand, M Rastgar, M Sadrzadeh (2019). Carbon-based polymer nanocomposite membranes for oily wastewater treatment. NPJ Clean Water, 2(1): 20
https://doi.org/10.1038/s41545-019-0044-z
92 M Nosonovsky, B Bhushan (2007). Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy, 107(10–11): 969–979
https://doi.org/10.1016/j.ultramic.2007.04.011 pmid: 17570591
93 M Padaki, Surya R Murali, M S Abdullah, N Misdan, A Moslehyani, M A Kassim, N Hilal, F Ismail (2015). Membrane technology enhancement in oil–water separation. A review. Desalination, 357: 197–207
https://doi.org/10.1016/j.desal.2014.11.023
94 A Panda, P Varshney, S S Mohapatra, A Kumar (2018). Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil-water separation properties. Carbohydrate Polymers, 181: 1052–1060
https://doi.org/10.1016/j.carbpol.2017.11.044 pmid: 29253931
95 A R Parker, C R Lawrence (2001). Water capture by a desert beetle. Nature, 414(6859): 33–34
https://doi.org/10.1038/35102108 pmid: 11689930
96 U C Paul, D Fragouli, I S Bayer, A Athanassiou (2016). Functionalized cellulose networks for efficient oil removal from oil–water emulsions. Polymers, 8(2): 52
https://doi.org/10.3390/polym8020052 pmid: 30979148
97 H Peng, H Wang, J Wu, G Meng, Y Wang, Y Shi, Z Liu, X Guo (2016a). Preparation of superhydrophobic magnetic cellulose sponge for removing oil from water. Industrial & Engineering Chemistry Research, 55(3): 832–838
https://doi.org/10.1021/acs.iecr.5b03862
98 H Peng, J Wu, Y Wang, H Wang, Z Liu, Y Shi, X Guo (2016b). A facile approach for preparation of underwater superoleophobicity cellulose/chitosan composite aerogel for oil/water separation. Applied Physics. A, Materials Science & Processing, 122(5): 516
https://doi.org/10.1007/s00339-016-0049-0
99 S Peng, Y Wang, Y Lan, X Shi, H Zhang, H Qu, J Xu (2020). Rational design of multifunctional superoleophobic/superhydrophilic, photocatalytic, and fire-retardant polyethylene terephthalate fabrics through layer-by-layer technique. Composites. Part B, Engineering, 200: 108264
https://doi.org/10.1016/j.compositesb.2020.108264
100 S Rasouli, N Rezaei, H Hamedi, S Zendehboudi, X Duan (2021). Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review. Materials & Design, 204: 109599
https://doi.org/10.1016/j.matdes.2021.109599
101 K Roger, B Cabane (2012). Why are hydrophobic/water interfaces negatively charged? Angewandte Chemie (International ed. in English), 51(23): 5625–5628
https://doi.org/10.1002/anie.201108228 pmid: 22532406
102 K Rohrbach, Y Li, H Zhu, Z Liu, J Dai, J Andreasen, L Hu (2014). A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chemical Communications, 50(87): 13296–13299
https://doi.org/10.1039/C4CC04817B pmid: 25229071
103 B R K Runkle, K Suvoèarev, M L Reba, C W Reavis, S F Smith, Y L Chiu, B Fong (2019). Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. Environmental Science & Technology, 53(2): 671–681
https://doi.org/10.1021/acs.est.8b05535 pmid: 30566833
104 A Salahi, A Gheshlaghi, T Mohammadi, S S Madaeni (2010). Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination, 262(1–3): 235–242
https://doi.org/10.1016/j.desal.2010.06.021
105 E K Sam, J Liu, X Lv (2021). Surface engineering materials of superhydrophobic sponges for oil/water separation: a review. Industrial & Engineering Chemistry Research, 60(6): 2353–2364
https://doi.org/10.1021/acs.iecr.0c05906
106 J Saththasivam, W Yiming, K Wang, J Jin, Z Liu (2018). A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation. Scientific Reports, 8(1): 7418
https://doi.org/10.1038/s41598-018-25788-9 pmid: 29743571
107 B R Scanlon, B L Ruddell, P M Reed, R I Hook, C Zheng, V C Tidwell, S Siebert (2017). The food–energy–water nexus: Transforming science for society. Water Resources Research, 53(5): 3550–3556
https://doi.org/10.1002/2017WR020889
108 T M Schutzius, C Walker, T Maitra, R Schönherr, C Stamatopoulos, S Jung, C Antonini, H Eghlidi, J L Fife, A Patera, D Derome, D Poulikakos (2017). Detergency and its implications for oil emulsion sieving and separation. Langmuir, 33(17): 4250–4259
https://doi.org/10.1021/acs.langmuir.7b00188 pmid: 28388096
109 C Semprebon, G McHale, H Kusumaatmaja (2017). Apparent contact angle and contact angle hysteresis on liquid infused surfaces. Soft Matter, 13(1): 101–110
https://doi.org/10.1039/C6SM00920D pmid: 27221773
110 H Shaghaleh, X Xu, S Wang (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2): 825–842
https://doi.org/10.1039/C7RA11157F
111 S Siebert, J Burke, J M Faures, K Frenken, J Hoogeveen, P Döll, F T Portmann (2010). Groundwater use for irrigation: A global inventory. Hydrology and Earth System Sciences, 14(10): 1863–1880
https://doi.org/10.5194/hess-14-1863-2010
112 B Song, Q Xu (2016). Highly hydrophobic and superoleophilic nanofibrous mats with controllable pore sizes for efficient oil/water separation. Langmuir, 32(39): 9960–9966
https://doi.org/10.1021/acs.langmuir.6b02500 pmid: 27616190
113 C Su, H Yang, S Song, B Lu, R Chen (2017). A magnetic superhydrophilic/oleophobic sponge for continuous oil-water separation. Chemical Engineering Journal, 309: 366–373
https://doi.org/10.1016/j.cej.2016.10.082
114 V K Suhas, Gupta, P J M Carrott, R Singh, M Chaudhary, S Kushwaha (2016). Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 216: 1066–1076
https://doi.org/10.1016/j.biortech.2016.05.106
115 J Sun, H Li, Y Huang, X Zheng, Y Liu, J Zhuang, D Wu (2019). Simple and affordable way to achieve polymeric superhydrophobic surfaces with biomimetic hierarchical roughness. ACS Omega, 4(2): 2750–2757
https://doi.org/10.1021/acsomega.8b03138 pmid: 31459509
116 H F Tan, B S Ooi, C P Leo (2020). Future perspectives of nanocellulose-based membrane for water treatment. Journal of Water Process Engineering, 37: 101502
https://doi.org/10.1016/j.jwpe.2020.101502
117 H Teisala, M Tuominen, J Kuusipalo (2014). Superhydrophobic coatings on cellulose–based materials: fabrication, properties, and applications. Advanced Materials Interfaces, 1(1): 1300026
https://doi.org/10.1002/admi.201300026
118 V K Thakur, S I Voicu (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate Polymers, 146: 148–165
https://doi.org/10.1016/j.carbpol.2016.03.030 pmid: 27112861
119 X Tian, H Jin, J Sainio, R H Ras, O Ikkala (2014). Droplet and fluid gating by biomimetic janus membranes. Advanced Functional Materials, 24(38): 6023–6028
https://doi.org/10.1002/adfm.201400714
120 A Tuteja, W Choi, M Ma, J M Mabry, S A Mazzella, G C Rutledge, G H McKinley, R E Cohen (2007). Designing superoleophobic surfaces. Science, 318(5856): 1618–1622
https://doi.org/10.1126/science.1148326 pmid: 18063796
121 P R Waghmare, N S K Gunda, S K Mitra (2014). Under-water superoleophobicity of fish scales. Scientific Reports, 4(1): 7454
https://doi.org/10.1038/srep07454 pmid: 25503502
122 C F Wang, H C Huang, L T Chen (2015a). Protonated melamine sponge for effective oil/water separation. Scientific Reports, 5(1): 14294
https://doi.org/10.1038/srep14294 pmid: 26399444
123 C F Wang, S Y Yang, S W Kuo (2017a). Eco-friendly superwetting material for highly effective separations of oil/water mixtures and oil-in-water emulsions. Scientific Reports, 7(1): 43053
https://doi.org/10.1038/srep43053 pmid: 28216617
124 F Wang, S Luo, S Xiao, W Zhang, Y Zhuo, J He, Z Zhang (2020a). Enabling phase transition of infused lubricant in porous structure for exceptional oil/water separation. Journal of Hazardous Materials, 390: 122176
https://doi.org/10.1016/j.jhazmat.2020.122176 pmid: 32006849
125 F P Wang, X J Zhao, F Wahid, X Q Zhao, X T Qin, H Bai, Y Y Xie, C Zhong, S R Jia (2021a). Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Carbohydrate Polymers, 253: 117220
https://doi.org/10.1016/j.carbpol.2020.117220 pmid: 33278983
126 G Wang, Y He, H Wang, L Zhang, Q Yu, S Peng, X Wu, T Ren, Z Zeng, Q Xue (2015b). A cellulose sponge with robust superhydrophilicity and under-water superoleophobicity for highly effective oil/water separation. Green Chemistry, 17(5): 3093–3099
https://doi.org/10.1039/C5GC00025D
127 J Wang, H Chen, T Sui, A Li, D Chen (2009). Investigation on hydrophobicity of lotus leaf: Experiment and theory. Plant Science, 176(5): 687–695
https://doi.org/10.1016/j.plantsci.2009.02.013
128 J Wang, F Han, S Zhang (2016a). Durably superhydrophobic textile based on fly ash coating for oil/water separation and selective oil removal from water. Separation and Purification Technology, 164: 138–145
https://doi.org/10.1016/j.seppur.2016.03.038
129 J Wang, A Wang, W Wang (2017b). Robustly superhydrophobic/superoleophilic kapok fiber with ZnO nanoneedles coating: Highly efficient separation of oil layer in water and capture of oil droplets in oil-in-water emulsions. Industrial Crops and Products, 108: 303–311
https://doi.org/10.1016/j.indcrop.2017.06.059
130 K Wang, T C Zhang, B Wei, S Chen, Y Liang, S Yuan (2021b). Durable CNTs reinforced porous electrospun superhydrophobic membrane for efficient gravity driven oil/water separation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 608: 125342
https://doi.org/10.1016/j.colsurfa.2020.125342
131 Q Wang, D Xie, J Chen, G Liu, M Yu (2020b). Superhydrophobic paper fabricated via nanostructured titanium dioxide-functionalized wood cellulose fibers. Journal of Materials Science, 55(16): 7084–7094
https://doi.org/10.1007/s10853-020-04489-7
132 S Wang, M Li, Q Lu (2010). Filter paper with selective absorption and separation of liquids that differ in surface tension. ACS Applied Materials & Interfaces, 2(3): 677–683
https://doi.org/10.1021/am900704u pmid: 20356268
133 S Wang, K Liu, X Yao, L Jiang (2015c). Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chemical Reviews, 115(16): 8230–8293
https://doi.org/10.1021/cr400083y pmid: 26244444
134 S Wang, A Lu, L Zhang (2016b). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53: 169–206
https://doi.org/10.1016/j.progpolymsci.2015.07.003
135 Y Wang, K Uetani, S Liu, X Zhang, Y Wang, P Lu, T Wei, Z Fan, J Shen, J Yu, S Li, Q Zhang, Q Li, J Fan, N Yang, Q Wang, Y Liu, J Cao, J Li, W Chen (2017c). Multifunctional bionanocomposite foams with a chitosan matrix reinforced by nanofibrillated cellulose. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 3(2): 98–108
https://doi.org/10.1002/cnma.201600266
136 Z Wang, M Elimelech, S Lin (2016c). Environmental applications of interfacial materials with special wettability. Environmental Science & Technology, 50(5): 2132–2150
https://doi.org/10.1021/acs.est.5b04351 pmid: 26829583
137 Z Wang, X Jiang, X Cheng, C H Lau, L Shao (2015d). Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS Applied Materials & Interfaces, 7(18): 9534–9545
https://doi.org/10.1021/acsami.5b00894 pmid: 25893661
138 Z Wang, G Liu, S Huang (2016d). In situ generated Janus fabrics for the rapid and efficient separation of oil from oil-in-water emulsions. Angewandte Chemie (International ed. in English), 55(47): 14610–14613
https://doi.org/10.1002/anie.201607581 pmid: 27774756
139 Z Wang, Y Wang, G Liu (2016e). Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angewandte Chemie (International ed. in English), 55(4): 1291–1294
https://doi.org/10.1002/anie.201507451 pmid: 26667967
140 R N Wenzel (1949). Surface roughness and contact angle. Journal of Physical Chemistry, 53(9): 1466–1467
https://doi.org/10.1021/j150474a015
141 T S Wong, S H Kang, S K Tang, E J Smythe, B D Hatton, A Grinthal, J Aizenberg (2011). Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 477(7365): 443–447
https://doi.org/10.1038/nature10447 pmid: 21938066
142 Z Wu, C Zhang, K Peng, Q Wang, Z Wang (2018). Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Frontiers of Environmental Science & Engineering, 12(3): 15
https://doi.org/10.1007/s11783-018-1042-y
143 X Xie, L Liu, L Zhang, A Lu (2020). Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation. Carbohydrate Polymers, 229: 115467
https://doi.org/10.1016/j.carbpol.2019.115467 pmid: 31826446
144 J Xu, C Ma, B Cao, J Bao, Y Sun, W Shi, S Yu (2016). Pilot study on hydrophilized PVDF membranetreating produced water from polymer flooding for reuse. Process Safety and Environmental Protection, 104: 564–570
https://doi.org/10.1016/j.psep.2016.06.020
145 T Xu, Z Gao, Y Jia, X Miao, X Zhu, J Lu, B Wang, Y Song, G Ren, X Li (2021). Superhydrophobic corn straw as a versatile platform for oil/water separation. Cellulose, 28(8): 4835–4846
https://doi.org/10.1007/s10570-021-03803-z
146 X Xu, Y Long, Q Li, D Li, D Mao, X Chen, Y Chen (2019). Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment. Journal of Cleaner Production, 211: 1463–1470
https://doi.org/10.1016/j.jclepro.2018.11.284
147 P Yadav, N Ismail, M Essalhi, M Tysklind, D Athanassiadis, N Tavajohi (2021). Assessment of the environmental impact of polymeric membrane production. Journal of Membrane Science, 622: 118987
https://doi.org/10.1016/j.memsci.2020.118987
148 C Yang, Y Wang, H Fu, S Yang, Y Zhu, H Yue, W Jiang, B Liang (2019a). A stable eco-friendly superhydrophobic/superoleophilic copper mesh fabricated by one-step immersion for efficient oil/water separation. Surface and Coatings Technology, 359: 108–116
https://doi.org/10.1016/j.surfcoat.2018.12.037
149 H C Yang, J Hou, V Chen, Z K Xu (2016). Janus membranes: Exploring duality for advanced separation. Angewandte Chemie (International ed. in English), 55(43): 13398–13407
https://doi.org/10.1002/anie.201601589 pmid: 27357604
150 J Yang, A Xie, J Cui, Y Chen, J Lang, C Li, Y Yan, J Dai (2020). An acid–alkali–salt resistant cellulose membrane by rapidly depositing polydopamine and assembling BaSO4 nanosheets for oil/water separation. Cellulose, 27(9): 5169–5178
https://doi.org/10.1007/s10570-020-03114-9
151 M Yang, W Liu, C Jiang, C Liu, S He, Y Xie, Z Wang (2019b). Facile preparation of robust superhydrophobic cotton textile for self-cleaning and oil–water separation. Industrial & Engineering Chemistry Research, 58(1): 187–194
https://doi.org/10.1021/acs.iecr.8b04433
152 G Yi, X Fan, X Quan, S Chen, H Yu (2019). Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater. Frontiers of Environmental Science & Engineering, 13(2): 23
https://doi.org/10.1007/s11783-019-1103-x
153 J P Youngblood, T J McCarthy (1999). Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Macromolecules, 32(20): 6800–6806
https://doi.org/10.1021/ma9903456
154 T Young (1805). III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95: 65–87
155 X Yue, J Li, T Zhang, F Qiu, D Yang, M Xue (2017). In situ one-step fabrication of durable superhydrophobicsuperoleophilic cellulose/LDH membrane with hierarchical structure for efficiency oil/water separation. Chemical Engineering Journal, 328: 117–123
https://doi.org/10.1016/j.cej.2017.07.026
156 X Yue, T Zhang, D Yang, F Qiu, Z Li (2018a). Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation. Journal of Cleaner Production, 199: 411–419
https://doi.org/10.1016/j.jclepro.2018.07.181
157 X Yue, T Zhang, D Yang, F Qiu, Z Li, Y Zhu, H Yu (2018b). Oil removal from oily water by a low-cost and durable flexible membrane made of layered double hydroxide nanosheet on cellulose support. Journal of Cleaner Production, 180: 307–315
https://doi.org/10.1016/j.jclepro.2018.01.160
158 X Yue, T Zhang, D Yang, F Qiu, Z Li (2018c). Janus ZnO-cellulose/MnO2 hybrid membranes with asymmetric wettability for highly-efficient emulsion separations. Cellulose, 25(10): 5951–5965
https://doi.org/10.1007/s10570-018-1996-8
159 M Zahid, J A Heredia-Guerrero, A Athanassiou, I S Bayer (2017). Robust water repellent treatment for woven cotton fabrics with eco-friendly polymers. Chemical Engineering Journal, 319: 321–332
https://doi.org/10.1016/j.cej.2017.03.006
160 S Zarghami, T Mohammadi, M Sadrzadeh, B Van der Bruggen (2019). Superhydrophilic and underwater superoleophobic membranes-A review of synthesis methods. Progress in Polymer Science, 98: 101166
https://doi.org/10.1016/j.progpolymsci.2019.101166
161 L Zhai, M C Berg, F C Cebeci, Y Kim, J M Milwid, M F Rubner, R E Cohen (2006). Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 6(6): 1213–1217
https://doi.org/10.1021/nl060644q pmid: 16771582
162 H Zhan, N Peng, X Lei, Y Huang, D Li, R Tao, C Chang (2018). UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydrate Polymers, 201: 464–470
https://doi.org/10.1016/j.carbpol.2018.08.093 pmid: 30241842
163 H Zhang, Y Li, Z Lu, L Chen, L Huang, M Fan (2017a). A robust superhydrophobic TiO2 NPs coated cellulose sponge for highly efficient oil-water separation. Scientific Reports, 7(1): 9428
https://doi.org/10.1038/s41598-017-09912-9 pmid: 28842635
164 K Zhang, M Wang, M Wu, Q Wu, J Liu, J Yang, J Zhang (2020a). Fabrication of robust superhydrophobic filter paper for oil/water separation based on the combined octadecanoyl chain bonding and polymer grafting via surface-initiated ATRP. Cellulose, 27(1): 469–480
https://doi.org/10.1007/s10570-019-02810-5 pmid: 32009745
165 M Zhang, C Wang, S Wang, J Li (2013). Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route. Carbohydrate Polymers, 97(1): 59–64
https://doi.org/10.1016/j.carbpol.2012.08.118 pmid: 23769517
166 S Zhang, J Huang, Z Chen, Y Lai (2017b). Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small, 13(3): 1602992
https://doi.org/10.1002/smll.201602992 pmid: 27935211
167 X Zhang, F Xiao, Q Feng, J Zheng, C Chen, H Chen, W Yang (2020b). Preparation of SiO2 nanoparticles with adjustable size for fabrication of SiO2/PMHS ORMOSIL superhydrophobic surface on cellulose-based substrates. Progress in Organic Coatings, 138: 105384
https://doi.org/10.1016/j.porgcoat.2019.105384
168 Y Zhang, X Wang, C Wang, H Zhai, B Liu, X Zhao, D Fang, Y Wei (2019a). Facile preparation of flexible and stable superhydrophobic non-woven fabric for efficient oily wastewater treatment. Surface and Coatings Technology, 357: 526–534
https://doi.org/10.1016/j.surfcoat.2018.10.037
169 Z Zhang, H Yu, J Guo, Z Bai, S Zhang, Y Zhang, J Wang (2019b). pH-Responsive smart non-woven fabrics (NWFs) with double switchable wettability between superhydrophilicity–superhydrophobicity–superhydrophilicity to oil/water separation. New Journal of Chemistry, 43(17): 6712–6720
https://doi.org/10.1039/C9NJ00409B
170 S Zhao, Z Tao, L Chen, M Han, B Zhao, X Tian, L Wang, F Meng (2021). An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering, 15(4): 63
https://doi.org/10.1007/s11783-020-1355-5
171 K Zhou, Q G Zhang, H M Li, N N Guo, A M Zhu, Q L Liu (2014). Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions. Nanoscale, 6(17): 10363–10369
https://doi.org/10.1039/C4NR03227F pmid: 25073443
172 S Zhou, T You, X Zhang, F Xu (2018). Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation. ACS Applied Nano Materials, 1(5): 2095–2103
https://doi.org/10.1021/acsanm.8b00079
173 X Zhou, Z Zhang, X Xu, F Guo, X Zhu, X Men, B Ge (2013). Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Applied Materials & Interfaces, 5(15): 7208–7214
https://doi.org/10.1021/am4015346 pmid: 23823678
174 D Zhu, Y Xia, J Yang, B Chen, S Guo, C Li (2017). One-step removal of insoluble oily compounds and water-miscible contaminants from water by underwater superoleophobic graphene oxide-coated cotton. Cellulose, 24(12): 5605–5614
https://doi.org/10.1007/s10570-017-1514-4
175 L Zhu, H Li, Y Yin, Z Cui, C Ma, X Li, Q Xue (2020). One-step synthesis of a robust and anti-oil-fouling biomimetic cactus-like hierarchical architecture for highly efficient oil/water separation. Environmental Science. Nano, 7(3): 903–911
https://doi.org/10.1039/C9EN01140D
176 G L Zhuang, S Y Wu, Y C Lo, Y C Chen, K L Tung, H H Tseng (2020). Gluconacetobacter xylinus synthesized biocellulose nanofiber membranes with superhydrophilic and superoleophobic underwater properties for the high-efficiency separation of oil/water emulsions. Journal of Membrane Science, 605: 118091
https://doi.org/10.1016/j.memsci.2020.118091
[1] Xiujuan Chen, Yunqiu Liu, Gordon Huang, Chunjiang An, Renfei Feng, Yao Yao, Wendy Huang, Shuqing Weng. Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation[J]. Front. Environ. Sci. Eng., 2022, 16(12): 153-.
[2] Na Li, Boqiang Gao, Ran Yang, Hu Yang. Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance in removal of fluoroquinolone antibiotics from water[J]. Front. Environ. Sci. Eng., 2022, 16(10): 133-.
[3] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[4] Ruiqiang LIU, Rattan LAL. Effects of molecular weight and concentration of carboxymethyl cellulose on morphology of hydroxyapatite nanoparticles as prepared with one-step wet chemical method[J]. Front. Environ. Sci. Eng., 2015, 9(5): 804-812.
[5] Hailong LIN, Weiguang LI, Changhong GUO, Sihang QU, Nanqi REN. Advances in the study of directed evolution for cellulases[J]. Front Envir Sci Eng Chin, 2011, 5(4): 519-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed