|
|
Is atmospheric oxidation capacity better in indicating tropospheric O3 formation? |
Peng Wang1,2, Shengqiang Zhu3, Mihalis Vrekoussis4,5, Guy P. Brasseur6,7, Shuxiao Wang8,9( ), Hongliang Zhang2,3,10( ) |
1. Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200438, China 2. IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China 3. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China 4. Institute of Environmental Physics, University of Bremen, Bremen D-28359, Germany 5. Climate and Atmosphere Research Center (CARE-C), the Cyprus Institute, Nicosia 27456, Cyprus 6. Max Planck Institute for Meteorology, Hamburg 20146, Germany 7. National Center for Atmospheric Research, Boulder, CO 80307, USA 8. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China 9. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China 10. Institute of Eco-Chongming (IEC), Shanghai 202162, China |
|
|
Abstract ● This study summarizes and evaluates different approaches that indicate O3 formation. ● Isopleth and sensitivity methods are useful but have many prerequisites. ● AOC is a better indicator of photochemical reactions leading to O3 formation. Tropospheric ozone (O3) concentration is increasing in China along with dramatic changes in precursor emissions and meteorological conditions, adversely affecting human health and ecosystems. O3 is formed from the complex nonlinear photochemical reactions from nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs). Although the mechanism of O3 formation is rather clear, describing and analyzing its changes and formation potential at fine spatial and temporal resolution is still a challenge today. In this study, we briefly summarized and evaluated different approaches that indicate O3 formation regimes. We identify that atmospheric oxidation capacity (AOC) is a better indicator of photochemical reactions leading to the formation of O3 and other secondary pollutants. Results show that AOC has a prominent positive relationship to O3 in the major city clusters in China, with a goodness of fit (R2) up to 0.6. This outcome provides a novel perspective in characterizing O3 formation and has significant implications for formulating control strategies of secondary pollutants.
|
Keywords
O3
AOC
O3 formation regime
|
Corresponding Author(s):
Shuxiao Wang,Hongliang Zhang
|
Issue Date: 29 May 2022
|
|
1 |
S Chen , H Wang , K Lu , L Zeng , M Hu , Y Zhang . (2020). The trend of surface ozone in Beijing from 2013 to 2019: Indications of the persisting strong atmospheric oxidation capacity. Atmospheric Environment, 242 : 117801
https://doi.org/10.1016/j.atmosenv.2020.117801
|
2 |
T M Chen , W G Kuschner , J Gokhale , S Shofer . (2007). Outdoor air pollution: Ozone health effects. American Journal of the Medical Sciences, 333( 4): 244– 248
https://doi.org/10.1097/MAJ.0b013e31803b8e8c
|
3 |
J F Clarke , J K S Ching . (1983). Aircraft observations of regional transport of ozone in the northeastern United States. Atmospheric Environment (1967), 17( 9): 1703– 1712
https://doi.org/10.1016/0004-6981(83)90177-4
|
4 |
D Ding , J Xing , S Wang , Z Dong , F Zhang , S Liu , J Hao . (2022). Optimization of a NOx and VOC cooperative control strategy based on clean air benefits. Environmental Science & Technology, 56( 2): 739– 749
https://doi.org/10.1021/acs.est.1c04201
|
5 |
M Dodge ( 1977). Combined Use of Modeling Techniques and Smog Chamber Data to Derive Ozone-precursor Relationships, US Environmental Protection Agency. Research Triangle Park, North Carolina: US Environmental Protection Agency, 881– 889
|
6 |
Y F Elshorbany , R Kurtenbach , P Wiesen , E Lissi , M Rubio , G Villena , E Gramsch , A R Rickard , M J Pilling , J Kleffmann . (2009). Oxidation capacity of the city air of Santiago, Chile. Atmospheric Chemistry and Physics, 9( 6): 2257– 2273
https://doi.org/10.5194/acp-9-2257-2009
|
7 |
T Feng , N Bei , R J Huang , J Cao , Q Zhang , W Zhou , X Tie , S Liu , T Zhang , X Su , W Lei , L T Molina , G Li . (2016). Summertime ozone formation in Xi’an and surrounding areas, China. Atmospheric Chemistry and Physics, 16( 7): 4323– 4342
https://doi.org/10.5194/acp-16-4323-2016
|
8 |
Z Feng , K Kobayashi . (2009). Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment, 43( 8): 1510– 1519
https://doi.org/10.1016/j.atmosenv.2008.11.033
|
9 |
B Gaubert , I Bouarar , T Doumbia , Y Liu , T Stavrakou , A Deroubaix , S Darras , N Elguindi , C Granier , F Lacey , J F Müller , X Shi , S Tilmes , T Wang , G P Brasseur . (2021). Global changes in secondary atmospheric pollutants during the 2020 COVID-19 pandemic. Journal of Geophysical Research: Atmospheres, 126( 8): e2020JD034213
|
10 |
L Husain , P E Coffey , R E Meyers , R T Cederwall . (1977). Ozone transport from stratosphere to troposphere. Geophysical Research Letters, 4( 9): 363– 365
https://doi.org/10.1029/GL004i009p00363
|
11 |
D J Jacob . (2000). Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34( 12): 2131– 2159
https://doi.org/10.1016/S1352-2310(99)00462-8
|
12 |
S Jin K Demerjian ( 1993). A photochemical box model for urban air quality study. Atmospheric Environment. Part B, Urban Atmosphere, 27( 4): 371− 387
|
13 |
X Jin , T Holloway . (2015). Spatial and temporal variability of ozone sensitivity over China observed from the ozone monitoring instrument. Journal of Geophysical Research. Atmospheres, 120( 14): 7229– 7246
https://doi.org/10.1002/2015JD023250
|
14 |
A S Kentarchos , G J Roelofs . (2003). A model study of stratospheric ozone in the troposphere and its contribution to tropospheric OH formation. Journal of Geophysical Research, 108( D12): 8517
https://doi.org/10.1029/2002JD002598
|
15 |
J Lelieveld , P Hoor , P Jöckel , A Pozzer , P Hadjinicolaou , J P Cammas , S Beirle . (2009). Severe ozone air pollution in the Persian Gulf region. Atmospheric Chemistry and Physics, 9( 4): 1393– 1406
https://doi.org/10.5194/acp-9-1393-2009
|
16 |
K Li , D J Jacob , H Liao , L Shen , Q Zhang , K H Bates . (2019a). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences of the United States of America, 116( 2): 422– 427
https://doi.org/10.1073/pnas.1812168116
|
17 |
K Li , D J Jacob , H Liao , J Zhu , V Shah , L Shen , K H Bates , Q Zhang , S Zhai . (2019b). A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience, 12( 11): 906– 910
https://doi.org/10.1038/s41561-019-0464-x
|
18 |
M Lippmann . (1989). Health effects of ozone a critical review. JAPCA, 39( 5): 672– 695
https://doi.org/10.1080/08940630.1989.10466554
|
19 |
Z Liu , Y Wang , B Hu , K Lu , G Tang , D Ji , X Yang , W Gao , Y Xie , J Liu , D Yao , Y Yang , Y Zhang . (2021). Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China. Science of the Total Environment, 771 : 145306
https://doi.org/10.1016/j.scitotenv.2021.145306
|
20 |
H Lu , X Lyu , H Cheng , Z Ling , H Guo . (2019). Overview on the spatial-temporal characteristics of the ozone formation regime in China. Environmental Science. Processes & Impacts, 21( 6): 916– 929
https://doi.org/10.1039/C9EM00098D
|
21 |
M Ma , Y Gao , A Ding , H Su , H Liao , S Wang , X Wang , B Zhao , S Zhang , P Fu , A B Guenther , M Wang , S Li , B Chu , X Yao , H Gao . (2022). Development and assessment of a high-resolution biogenic emission inventory from urban green spaces in China. Environmental Science & Technology, 56( 1): 175– 184
https://doi.org/10.1021/acs.est.1c06170
|
22 |
M Ma , Y Gao , Y Wang , S Zhang , L R Leung , C Liu , S Wang , B Zhao , X Chang , H Su , T Zhang , L Sheng , X Yao , H Gao . (2019). Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 19( 19): 12195– 12207
https://doi.org/10.5194/acp-19-12195-2019
|
23 |
L Menut , R Vautard , M Beekmann , C Honoré . (2000). Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model. Journal of Geophysical Research, 105( D12): 15379– 15402
https://doi.org/10.1029/1999JD900953
|
24 |
J B Milford , A G Russell , G J Mcrae . (1989). A new approach to photochemical pollution control: Implications of spatial patterns in pollutant responses to reductions in nitrogen oxides and reactive organic gas emissions. Environmental Science & Technology, 23( 10): 1290– 1301
https://doi.org/10.1021/es00068a017
|
25 |
P S Monks . (2005). Gas-phase radical chemistry in the troposphere. Chemical Society Reviews, 34( 5): 376– 395
https://doi.org/10.1039/b307982c
|
26 |
I B Pollack , T B Ryerson , M Trainer , J A Neuman , J M Roberts , D D Parrish . (2013). Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. Journal of Geophysical Research. Atmospheres, 118( 11): 5893– 5911
https://doi.org/10.1002/jgrd.50472
|
27 |
W C Porter , S A Safieddine , C L Heald . (2017). Impact of aromatics and monoterpenes on simulated tropospheric ozone and total OH reactivity. Atmospheric Environment, 169 : 250– 257
https://doi.org/10.1016/j.atmosenv.2017.08.048
|
28 |
R G Prinn . (2003). The cleansing capacity of the atmosphere. Annual Review of Environment and Resources, 28( 1): 29– 57
https://doi.org/10.1146/annurev.energy.28.011503.163425
|
29 |
Y Qian , L R F Henneman , J A Mulholland , A G Russell . (2019). Empirical development of ozone isopleths: Applications to Los Angeles. Environmental Science & Technology Letters, 6( 5): 294– 299
https://doi.org/10.1021/acs.estlett.9b00160
|
30 |
M Qin A Hu J Mao X Li L Sheng J Sun J Li X Wang Y Zhang J (2022) Hu. PM2.5 and O3 relationships affected by the atmospheric oxidizing capacity in the Yangtze River Delta, China . Science of the Total Environment, 810: 152268
|
31 |
X Ren , Duin D Van , M Cazorla , S Chen , J Mao , L Zhang , W H Brune , J H Flynn , N Grossberg , B L Lefer , B Rappenglück , K W Wong , C Tsai , J Stutz , J E Dibb , Jobson B Thomas , W T Luke , P Kelley . (2013). Atmospheric oxidation chemistry and ozone production: Results from SHARP 2009 in Houston, Texas. Journal of Geophysical Research. Atmospheres, 118( 11): 5770– 5780
https://doi.org/10.1002/jgrd.50342
|
32 |
S Sillman . (1995). The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. Journal of Geophysical Research, 100( D7): 14175– 14188
https://doi.org/10.1029/94JD02953
|
33 |
S Sillman . (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33( 12): 1821– 1845
https://doi.org/10.1016/S1352-2310(98)00345-8
|
34 |
S Sillman D He ( 2002). Some theoretical results concerning O3-NO x-VOC chemistry and NO x-VOC indicators . Journal of Geophysical Research: Atmospheres, 107(D22): ACH 26– 21-ACH 26– 21
|
35 |
S Sillman , J A Logan , S C Wofsy . (1990). The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophysical Research, 95( D2): 1837– 1851
https://doi.org/10.1029/JD095iD02p01837
|
36 |
J I Steinfeld . (1998). Atmospheric chemistry and physics: from air pollution to climate change. Environment, 40( 7): 26
https://doi.org/10.1080/00139157.1999.10544295
|
37 |
Z Tan , K Lu , M Jiang , R Su , H Dong , L Zeng , S Xie , Q Tan , Y Zhang . (2018). Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Science of the Total Environment, 636 : 775– 786
https://doi.org/10.1016/j.scitotenv.2018.04.286
|
38 |
R Van Dingenen , F J Dentener , F Raes , M C Krol , L Emberson , J Cofala . (2009). The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 43( 3): 604– 618
https://doi.org/10.1016/j.atmosenv.2008.10.033
|
39 |
N Wang , X Lyu , X Deng , X Huang , F Jiang , A Ding . (2019a). Aggravating O3 pollution due to NOx emission control in eastern China. Science of the Total Environment, 677 : 732– 744
https://doi.org/10.1016/j.scitotenv.2019.04.388
|
40 |
P Wang , Y Chen , J Hu , H Zhang , Q Ying . (2019b). Attribution of tropospheric ozone to NOx and VOC emissions: Considering ozone formation in the transition regime. Environmental Science & Technology, 53( 3): 1404– 1412
https://doi.org/10.1021/acs.est.8b05981
|
41 |
S Wang , Y Zhang , J Ma , S Zhu , J Shen , P Wang , H Zhang . (2021a). Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Science of the Total Environment, 756 : 143868
https://doi.org/10.1016/j.scitotenv.2020.143868
|
42 |
W Wang , A R Van Der , J Ding , M Van Weele , T Cheng . (2021b). Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmospheric Chemistry and Physics, 21( 9): 7253– 7269
https://doi.org/10.5194/acp-21-7253-2021
|
43 |
Y Wang , S Zhu , J Ma , J Shen , P Wang , P Wang , H Zhang . (2021c). Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Science of the Total Environment, 768 : 144796
https://doi.org/10.1016/j.scitotenv.2020.144796
|
44 |
J Xing , S X Wang , C Jang , Y Zhu , J M Hao . (2011). Nonlinear response of ozone to precursor emission changes in China: A modeling study using response surface methodology. Atmospheric Chemistry and Physics, 11( 10): 5027– 5044
https://doi.org/10.5194/acp-11-5027-2011
|
45 |
L Ye , X Wang , S Fan , W Chen , M Chang , S Zhou , Z Wu , Q Fan . (2016). Photochemical indicators of ozone sensitivity: Application in the Pearl River Delta, China. Frontiers of Environmental Science & Engineering, 10( 6): 15
https://doi.org/10.1007/s11783-016-0887-1
|
46 |
K Zhao , H Luo , Z Yuan , D Xu , Y Du , S Zhang , Y Hao , Y Wu , J Huang , Y Wang , R Jiang . (2021). Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region. Journal of Environmental Sciences-China, 102 : 373– 383
https://doi.org/10.1016/j.jes.2020.09.038
|
47 |
J Zhu , S Wang , H Wang , S Jing , S Lou , A Saiz-Lopez , B Zhou . (2020). Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China. Atmospheric Chemistry and Physics, 20( 3): 1217– 1232
https://doi.org/10.5194/acp-20-1217-2020
|
48 |
S Zhu , J Poetzscher , J Shen , S Wang , P Wang , H Zhang . (2021). Comprehensive insights into O3 changes during the COVID-19 from O3 formation regime and atmospheric oxidation capacity. Geophysical Research Letters, 48( 10): e2021GL093668
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|