Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (10) : 129    https://doi.org/10.1007/s11783-022-1564-1
RESEARCH ARTICLE
Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom control in reclaimed water landscape
Keying Song1,2, Shufeng Zhu1,2, Yun Lu1,2, Guohua Dao3, Yinhu Wu1,2, Zhuo Chen1,2, Shengnan Wang1,2, Junhan Liu1,2, Wenguang Zhou4, Hong-Ying Hu1,5()
1. Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
2. Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China
3. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
4. Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
5. Research Institute for Environmental Innovation (Suzhou) Tsinghua, Jiangsu, Suzhou 215163, China
 Download: PDF(2278 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A new model for bloom control in open land scape water was constructed.

● It considers the effects of temperature and light on algae growth.

● It describes threshold curve of nitrogen, phosp horus and hydraulic retention time.

● Light and temperature dependent growth para meters of typical algae were obtained.

The risks posed by algal blooms caused by nitrogen and phosphorus in reclaimed water used in urban water landscapes need to be carefully controlled. In this study, the combined effects of the nitrogen and phosphorus concentrations and the light intensity and temperature on the specific growth rates of algae were determined using Monod, Steele, and Arrhenius models, then an integrated algal growth model was developed. The algae biomass, nitrogen concentration, and phosphorus concentration mass balance equations were used to establish a new control model describing the nitrogen and phosphorus concentration and hydraulic retention time thresholds for algal blooms. The model parameters were determined by fitting the models to data acquired experimentally. Finally, the control model and numerical simulations for six typical algae and mixed algae under standard conditions were used to determine nitrogen/phosphorus concentration and hydraulic retention time thresholds for landscape water to which reclaimed water is supplied (i.e., for a reclaimed water landscape).

Keywords Reclaimed water landscape      Algal bloom      Nitrogen and phosphorus      Hydraulic retention time      Threshold      Control model     
Corresponding Author(s): Hong-Ying Hu   
Issue Date: 31 March 2022
 Cite this article:   
Keying Song,Shufeng Zhu,Yun Lu, et al. Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom control in reclaimed water landscape[J]. Front. Environ. Sci. Eng., 2022, 16(10): 129.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1564-1
https://academic.hep.com.cn/fese/EN/Y2022/V16/I10/129
Fig.1  Schematic diagram of an open reclaimed water landscape system.
Algae species YX|N (1) YX|P (1) KN (mg/L) KP (mg/L) μmax (d?1) Iopt (lx) Ea (kJ/mol)
Chlorella vulgaris 32.541 219 5.508 0.276 0.519 2621 76.478
Scenedesmus quadricauda 24.969 207.647 9.767 0.205 0.699 2880 49.895
Microcystis aeruginosa 24.708 224.206 18.581 0.428 0.612 1920 38.694
Oscillatoria planctonica 37.675 247.156 20.031 0.438 1.005 2411 124.323
Synedra sp. 3.033 48.762 7.598 0.344 0.947 5085 99.699
Melosira sp. 1.473 23.779 4.851 0.263 0.548 2848 209.404
Mixed algae in Dianchi Lake 14.067 364.731 0.989 0.215 0.362 3859 97.577
Tab.1  Parameters used in the control model for the nitrogen and phosphorus concentrations and hydraulic retention time
Algae species Maximum specific growth rate μmax’ (d?1)
Chlorella vulgaris 0.107
Scenedesmus quadricauda 0.156
Microcystis aeruginosa 0.161
Oscillatoria planctonica 0.171
Synedra sp. 0.129
Melosira sp. 0.061
Mixed algae 0.058
Tab.2  Maximum specific growth rate μmax’ (d?1) for each algal species
Fig.2  Threshold analysis of nitrogen and phosphorus concentrations for hydraulic retention times of 30 d (a) and 60 d (b) for six algal species.
Fig.3  Threshold analysis of nitrogen and phosphorus concentrations for hydraulic retention times of 30 d (a) and 60 d (b) for mixed algae.
Fig.4  Threshold analysis of nitrogen (a) and phosphorus (b) concentrations for six algal species.
Fig.5  Threshold analysis of nitrogen (a) and phosphorus (b) concentrations for mixed algae.
Fig.6  Threshold analysis of the hydraulic retention times for different phosphorus (a) and nitrogen (b) concentrations for six algal species.
Fig.7  Threshold analysis of the hydraulic retention times for different phosphorus (a) and nitrogen (b) concentrations for mixed algae.
1 J F Andrews . (1968). A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnology and Bioengineering, 10( 6): 707– 723
https://doi.org/10.1002/bit.260100602
2 D Ao , R Chen , X C Wang , Y Liu , M Dzakpasu , L Zhang , Y Huang , T Xue , N Wang . (2018). On the risks from sediment and overlying water by replenishing urban landscape ponds with reclaimed wastewater. Environmental Pollution, 236 : 488– 497
https://doi.org/10.1016/j.envpol.2018.01.105
3 S Arrhenius . (1889). Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte. Zeitschrift für Physikalische Chemie, 4U( 1): 96– 116
https://doi.org/10.1515/zpch-1889-0408
4 B C Benson , K A Rusch . (2006). Investigation of the light dynamics and their impact on algal growth rate in a hydraulically integrated serial turbidostat algal reactor (HISTAR). Aquacultural Engineering, 35( 2): 122– 134
https://doi.org/10.1016/j.aquaeng.2005.09.005
5 F Casagli , G Zuccaro , O Bernard , J P Steyer , E Ficara . (2021). ALBA: A comprehensive growth model to optimize algae-bacteria wastewater treatment in raceway ponds. Water Research, 190 : 116734
https://doi.org/10.1016/j.watres.2020.116734
6 R Chen , D Ao , J Ji , X C Wang , Y Y Li , Y Huang , T Xue , H Guo , N Wang , L Zhang . (2017). Insight into the risk of replenishing urban landscape ponds with reclaimed wastewater. Journal of Hazardous Materials, 324( Pt B): 573– 582
https://doi.org/10.1016/j.jhazmat.2016.11.028
7 Z Chen , G Wu , Y Wu , Q Wu , Q Shi , H H Ngo , O A Vargas Saucedo , H Y Hu . (2020). Water Eco-Nexus Cycle System (WaterEcoNet) as a key solution for water shortage and water environment problems in urban areas. Water Cycle, 1 : 71– 77
https://doi.org/10.1016/j.watcyc.2020.05.004
8 J Coppens , B Decostere , S Van Hulle , I Nopens , S E Vlaeminck , L De Gelder , N Boon . (2014). Kinetic exploration of nitrate-accumulating microalgae for nutrient recovery. Applied Microbiology and Biotechnology, 98( 19): 8377– 8387
https://doi.org/10.1007/s00253-014-5854-9
9 V Dakos , E Benincà , Nes E H van , C J M Philippart , M Scheffer , J Huisman . (2009). Interannual variability in species composition explained as seasonally entrained chaos. Proceedings Biological Sciences, 276( 1669): 2871– 2880
https://doi.org/10.1098/rspb.2009.0584
10 G H Dao , G X Wu , X X Wang , L L Zhuang , T Y Zhang , H Y Hu . (2018). Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresource Technology, 247 : 561– 567
https://doi.org/10.1016/j.biortech.2017.09.079
11 R W Eppley . (1972). Temperature and phytoplankton growth in the sea. Fish Bulletin, 70( 4): 1063– 1085
12 F Feng , Y Li , B Latimer , C Zhang , S S Nair , Z Hu . (2021). Prediction of maximum algal productivity in membrane bioreactors with a light-dependent growth model. Science of the Total Environment, 753 : 141922
https://doi.org/10.1016/j.scitotenv.2020.141922
13 M Fukushima , N Tomioka , T Jutagate , M Hiroki , T Murata , C Preecha , P Avakul , P Phomikong , A Imai . (2017). The dynamics of pico-sized and bloom-forming cyanobacteria in large water bodies in the Mekong River Basin. PLoS One, 12( 12): e0189609
https://doi.org/10.1371/journal.pone.0189609
14 M T Gutierrez-Wing , B C Benson , K A Rusch . (2012). Impact of light quality and quantity on growth rate kinetics of Selenastrum capricornutum. Engineering in Life Sciences, 12( 1): 79– 88
https://doi.org/10.1002/elsc.201000217
15 M Ji , Z Liu , K Sun , Z Li , X Fan , Q Li . (2021). Bacteriophages in water pollution control: Advantages and limitations. Frontiers of Environmental Science & Engineering, 15( 5): 84
16 X Jin , S Lu , X Hu , X Jiang , F Wu . (2008). Control concept and countermeasures for shallow lakes’ eutrophication in China. Frontiers of Environmental Science & Engineering in China, 2( 3): 257– 266
https://doi.org/10.1007/s11783-008-0063-3
17 K Kovárová-Kovar , T Egli . (1998). Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microbiology and Molecular Biology Reviews, 62( 3): 646– 666
https://doi.org/10.1128/MMBR.62.3.646-666.1998
18 E Lee , M Jalalizadeh , Q Zhang . (2015). Growth kinetic models for microalgae cultivation: A review. Algal Research, 12 : 497– 512
https://doi.org/10.1016/j.algal.2015.10.004
19 C Leong , F Mukhtarov . (2018). Global IWRM ideas and local context: Studying narratives in rural Cambodia. Water, 10( 11): 1643
https://doi.org/10.3390/w10111643
20 D Li , D Huang , C Guo , X Guo . (2015). Multivariate statistical analysis of temporal-spatial variations in water quality of a constructed wetland purification system in a typical park in Beijing, China. Environmental Monitoring and Assessment, 187( 1): 4219
https://doi.org/10.1007/s10661-014-4219-2
21 G Li, C H Hao, Y M Jing, D X Liu, Y (2013) Li. Eutrophication problems of recycled water for landscape water and ecological restoration. Applied Mechanics and Materials, 361– 363: 361– 363
22 Q Li , W Wang , X Jiang , D Lu , Y Zhang , J Li . (2020). Analysis of the potential of reclaimed water utilization in typical inland cities in northwest China via system dynamics. Journal of Environmental Management, 270 : 110878
https://doi.org/10.1016/j.jenvman.2020.110878
23 X Li , H Y Hu , K Gan , Y X Sun . (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101( 14): 5494– 5500
https://doi.org/10.4028/www.scientific.net/AMM.361-363.938
24 Z Liao , Z Chen , A Xu , Q Gao , K Song , J Liu , H Y Hu . (2021). Wastewater treatment and reuse situations and influential factors in major Asian countries. Journal of Environmental Management, 282 : 111976
https://doi.org/10.1016/j.jenvman.2021.111976
25 X Lv , J Zhang , P Liang , X Zhang , K Yang , X Huang . (2020). Phytoplankton in an urban river replenished by reclaimed water: Features, influential factors and simulation. Ecological Indicators, 112 : 106090
https://doi.org/10.1016/j.ecolind.2020.106090
26 A Mackie , M Woszczynski , H Farmer , M E Walsh , G A Gagnon . (2009). Water Reclamation and Reuse. Water Environment Research, 81( 10): 1406– 1418
https://doi.org/10.2175/106143009X12445568399811
27 J S Marks . (2006). Taking the public seriously: The case of potable and non potable reuse. Desalination, 187( 1–3): 137– 147
https://doi.org/10.1016/j.desal.2005.04.074
28 J Monod . (1949). Growth of bacterial cultures. Annual Review of Microbiology, 3( 1): 371– 394
https://doi.org/10.1146/annurev.mi.03.100149.002103
29 P Muhid , T W Davis , S E Bunn , M A Burford . (2013). Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition. Water Research, 47( 1): 384– 394
https://doi.org/10.1016/j.watres.2012.10.015
30 K Özkan , E Jeppesen , M Søndergaard , T L Lauridsen , L Liboriussen , J C Svenning . (2013). Contrasting roles of water chemistry, lake morphology, land-use, climate and spatial processes in driving phytoplankton richness in the Danish landscape. Hydrobiologia, 710( 1): 173– 187
https://doi.org/10.1007/s10750-011-0996-6
31 H W Paerl , N S Hall , E S Calandrino . (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409( 10): 1739– 1745
https://doi.org/10.1016/j.scitotenv.2011.02.001
32 H W Paerl, J Huisman ( 2008). Climate: Blooms like it hot. Science, 320(5872): 57–58
33 G Phillips , O P Pietiläinen , L Carvalho , A Solimini , Solheim A Lyche , A C Cardoso . (2008). Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquatic Ecology, 42( 2): 213– 226
https://doi.org/10.1007/s10452-008-9180-0
34 M Pliński , T Jozwiak . (1999). Temperature and N:P ratio as factors causing blooms of blue-green algae in the Gulf of Gdańsk. Oceanologia, 41( 1): 73– 80
35 J Ruiz , P D Álvarez-Díaz , Z Arbib , C Garrido-Pérez , J Barragán , J A Perales . (2013). Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: Prediction from a batch experiment. Bioresource Technology, 127 : 456– 463
https://doi.org/10.1016/j.biortech.2012.09.103
36 M Salgot , M Folch . (2018). Wastewater treatment and water reuse. Current Opinion in Environmental Science & Health, 2 : 64– 74
https://doi.org/10.1016/j.coesh.2018.03.005
37 X Shi , Z Chen , Y Lu , Q Shi , Y Wu , H Y Hu . (2021). Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: Implications for biostability control of reclaimed water. Frontiers of Environmental Science & Engineering, 15( 4): 68
https://doi.org/10.1007/s11783-020-1360-8
38 J Song , C Li , X Wang , S Zhi , X Wang , J Sun . (2021). Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Frontiers of Environmental Science & Engineering, 15( 6): 129
https://doi.org/10.1007/s11783-021-1417-3
39 J H Steele . (1962). Environmental control of photosynthesis in the sea. Limnology and Oceanography, 7( 2): 137– 150
https://doi.org/10.4319/lo.1962.7.2.0137
40 D S Wágner , B Valverde-Pérez , M Sæbø , de la Sotilla M Bregua , Wagenen J Van , B F Smets , B G Plósz . (2016). Towards a consensus-based biokinetic model for green microalgae: The ASM-A. Water Research, 103 : 485– 499
https://doi.org/10.1016/j.watres.2016.07.026
41 C Wang , Z X Yuan , Y Y Liu , Q Y Wu , Y X Sun . (2021). Relative developmental toxicities of reclaimed water to zebrafish embryos and the relationship with relevant water quality parameters. Water Cycle, 2 : 85– 90
https://doi.org/10.1016/j.watcyc.2021.11.003
42 L Wang , B Zheng . (2013). Prediction of chlorophyll-a in the Daning River of Three Gorges Reservoir by principal component scores in multiple linear regression models. Water Science & Technology, 67( 5): 1150– 1158
https://doi.org/10.2166/wst.2013.679
43 W H Wang, Y Wang, Z Li, C Z Wei, J C Zhao, L Q (2018) Sun. Effect of a strengthened ecological floating bed on the purification of urban landscape water supplied with reclaimed water. Science of the Total Environment, 622–623: 1630–1639
pmid: 29054622
44 Z Wang , J Li , Y Li . (2017). Using reclaimed water for agricultural and landscape irrigation in China: A review. Irrigation and Drainage, 66( 5): 672– 686
https://doi.org/10.1002/ird.2129
45 K Wencki , V Thöne , A Ante , T Hogen , C Hohmann , F Tettenborn , D Pohl , P Preiss , C Jungfer . (2020). Approaches for the evaluation of future-oriented technologies and concepts in the field of water reuse and desalination. Journal of Water Reuse and Desalination, 10( 4): 269– 283
https://doi.org/10.2166/wrd.2020.022
46 M Winder, J E (2010) Cloern. The annual cycles of phytoplankton biomass. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365(1555): 3215–3226
pmid: 20819814
47 Y H Wu , X Li , Y Yu , H Y Hu , T Y Zhang , F M Li . (2013). An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent. Bioresource Technology, 144 : 445– 451
https://doi.org/10.1016/j.biortech.2013.06.065
48 E Xie , X Zhao , K Li , P Zhang , X Zhou , X Zhao . (2021). Microbial community structure in the river sediments from upstream of Guanting Reservoir: Potential impacts of reclaimed water recharge. Science of the Total Environment, 766 : 142609
https://doi.org/10.1016/j.scitotenv.2020.142609
49 J Yang , X Li , H Hu , X Zhang , Y Yu , Y Chen . (2011). Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Applied Energy, 88( 10): 3295– 3299
https://doi.org/10.1016/j.apenergy.2010.11.029
50 L Yi , W Jiao , X Chen , W Chen . (2011). An overview of reclaimed water reuse in China. Journal of Environmental Sciences-China, 23( 10): 1585– 1593
https://doi.org/10.1016/S1001-0742(10)60627-4
51 C Zafra , Y Ángel , E Torres . (2017). ARIMA analysis of the effect of land surface coverage on PM10 concentrations in a high-altitude megacity. Atmospheric Pollution Research, 8( 4): 660– 668
https://doi.org/10.1016/j.apr.2017.01.002
52 J Zhang , Z Wei , H Jia , X Huang . (2017). Factors influencing water quality indices in a typical urban river originated with reclaimed water. Frontiers of Environmental Science & Engineering, 11( 4): 8
https://doi.org/10.1007/s11783-017-0943-5
53 H J Zhao , Y Wang , L L Yang , L W Yuan , D C Peng . (2015). Relationship between phytoplankton and environmental factors in landscape water supplemented with reclaimed water. Ecological Indicators, 58 : 113– 121
https://doi.org/10.1016/j.ecolind.2015.03.033
54 X Zhu , G Dao , Y Tao , X Zhan , H Hu . (2021). A review on control of harmful algal blooms by plant-derived allelochemicals. Journal of Hazardous Materials, 401 : 123403
https://doi.org/10.1016/j.jhazmat.2020.123403
[1] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[2] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[3] Hongyan LI, Yu ZHANG, Min YANG, Yoichi KAMAGATA. Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system[J]. Front Envir Sci Eng, 2013, 7(1): 43-48.
[4] Jianhua WANG, Yongzhen PENG, Yongzhi CHEN. Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(3): 474-480.
[5] Hongjing LI, Yinguang CHEN. Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems[J]. Front Envir Sci Eng Chin, 2011, 5(2): 283-290.
[6] HU Hongying, HONG Yu. Algal-bloom control by allelopathy of aquatic macrophytes-A review[J]. Front.Environ.Sci.Eng., 2008, 2(4): 421-438.
[7] LI Jun, NI Yongjiong, WEI Su, CHENG Guobiao, OU Changjin, PENG Yongzhen, GU Guowei, LU Jingen. On-line controlling system for nitrogen and phosphorus removal of municipal wastewater in a sequencing batch reactor (SBR)[J]. Front.Environ.Sci.Eng., 2008, 2(1): 99-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed