Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (1) : 4    https://doi.org/10.1007/s11783-023-1604-5
RESEARCH ARTICLE
Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A
Haoduo Zhao1,2, Min Liu1,2, Junjie Yang1,2, Yuyang Chen3, Mingliang Fang1,4()
1. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
2. Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
3. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
4. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
 Download: PDF(9338 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Metabolomic temporal profiling of cells exposed to xenobiotics.

● Global metabolome dysregulation patterns with time-resolved landscapes.

● Synchronized regulation behavior and specific dysregulation sensitivity.

● Temporal metabolic adaptions indicated cellular emphasis transition.

The biochemical consequences induced by xenobiotic stress are featured in dose-response and time-resolved landscapes. Understanding the dynamic process of cellular adaptations is crucial in conducting the risk assessment for chemical exposure. As one of the most phenotype-related omics, metabolome in response to environmental stress can vary from seconds to days. Up to now, very few dynamic metabolomics studies have been conducted to provide time-dependent mechanistic interpretations in understanding xenobiotics-induced cellular adaptations. This study aims to explore the time-resolved metabolite dysregulation manner and dynamically perturbed biological functions in MCF-7 cells exposed to bisphenol A (BPA), a well-known endocrine-disrupting chemical. By sampling at 11 time points from several minutes to hours, thirty seven significantly dysregulated metabolites were identified, ranging from amino acids, fatty acids, carboxylic acids and nucleoside phosphate compounds. The metabolites in different pathways basically showed distinct time-resolved changing patterns, while those within the common class or same pathways showed similar and synchronized dysregulation behaviors. The pathway enrichment analysis suggested that purine metabolism, pyrimidine metabolism, aminoacyl-tRNA biosynthesis as well as glutamine/glutamate (GABA) metabolism pathways were heavily disturbed. As exposure event continued, MCF-7 cells went through multiple sequential metabolic adaptations from cell proliferation to energy metabolism, which indicated an enhancing cellular requirement for elevated energy homeostasis, oxidative stress response and ER-α mediated cell growth. We further focused on the time-dependent metabolite dysregulation behavior in purine and pyrimidine metabolism, and identified the impaired glycolysis and oxidative phosphorylation by redox imbalance. Lastly, we established a restricted cubic spline-based model to fit and predict metabolite’s full range dysregulation cartography, with metabolite’ sensitivity comparisons retrieved and novel biomarkers suggested. Overall, the results indicated that 8 h BPA exposure leaded to global dynamic metabolome adaptions including amino acid, nucleoside and sugar metabolism disorders, and the dysregulated metabolites with interfered pathways at different stages are of significant temporal distinctions.

Keywords Metabolomics      BPA      MCF-7      Temporal profiling      Metabolic adaption      Dysregulation correlation     
Corresponding Author(s): Mingliang Fang   
Issue Date: 04 August 2022
 Cite this article:   
Haoduo Zhao,Min Liu,Junjie Yang, et al. Time-dependent metabolomics uncover dynamic metabolic adaptions in MCF-7 cells exposed to bisphenol A[J]. Front. Environ. Sci. Eng., 2023, 17(1): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1604-5
https://academic.hep.com.cn/fese/EN/Y2023/V17/I1/4
Fig.1  Tiered approach of the time-resolved metabolomics study. (A) Experimental workflow to harvest MCF-7 cells exposed to Bisphenol A at 11 varying time points (0 h, 0.25 h, 0.5 h, 0.75 h, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, and 8 h), with intercellular metabolites extracted and analyzed by HPLC-MS. (B) Data processing and metabolite identification under untargeted metabolomics framework. The applied methodology included but not limited to: MS1 profiling, MS2 validation, RT shifted correction, in-house standard library alignment, one-way ANOVA, t-test, pathway enrichment analysis, etc. (C) Time-resolved metabolomics was implemented to uncover metabolite time-dependent dysregulation behavior, including metabolite dysregulation analysis, temporal pathway enrichment and restricted cubic spline-based prediction.
Fig.2  (A) Principal component analysis score plot of aligned features at 0 h, 2 h, 6 h, and 8 h (3 control samples and 1 mean point at 0 h; 4 treated samples and 1 mean point at 2 h, 6 h, and 8 h); (B) Principal component analysis scree plot of total ion features at 0 h, 2 h, 6 h, and 8 h; (C) Up and down-regulated significant features of 10 time point detected by global profiling (pairwise comparison with control samples); (D) Venn diagram summarizing the number of shared and distinct features of total metabolome features at 2 h, 4 h, 6 h, and 8 h (multigroup analysis).
Fig.3  Clustered heatmap of 37 significant dysregulated metabolites. Scales in colored key represent z-score scaled fold change value of metabolites. [Abbreviations: Nicotinamide adenine dinucleotide (NAD); 1,4-Dihydronicotinamide adenine dinucleotide (NADH); Adenosine 5'-diphosphate (ADP).]
Fig.4  (A) Metabolite enrichment analysis of 37 significant dysregulated metabolites (p ≤ 0.05); (B) Temporal diagram of the top 3 mostly enriched pathway (with minimum p-value) at each time point; (C) Rose diagrams which present the number of significantly changed metabolites and significantly disturbed pathway (p ≤ 0.05) at each time point; (D) Average abundance profiles of detected metabolites for four pathways (purine metabolism, pyrimidine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism). The pathway value was set as the mean of the involved metabolite within specified pathway. All abundance levels are normalized to their mean values at 0 h.
Fig.5  Metabolomic analysis of purine metabolism and pyrimidine metabolism. The time-response plot for detected metabolites were shown (fold change vs. time), with red dashed line stands for control (FC = 1).
Fig.6  (A) Pearson correlation matrix of 37 metabolites. Dots and figure in color stands for correlation coefficient from –1(red) to 1 (blue), with significance level presented (”*” for p < 0.05; ”**” for p < 0.01; ”***” for p < 0.001, respectively); (B) Schematic diagram of dynamically changing NAD:NADH ratio; (C) Schematic diagram of dynamically changing GSH:GSSG ratio.
Fig.7  Restricted cubic spline fitting curve of four metabolites, with confidence level indicated in grey (p < 0.05).
1 N Acevedo, B Davis, C M Schaeberle, C Sonnenschein, A M Soto. (2013). Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environmental Health Perspectives, 121( 9): 1040– 1046
https://doi.org/10.1289/ehp.1306734 pmid: 23876597
2 S M Aghajanpour-Mir, E Zabihi, H Akhavan-Niaki, E Keyhani, I Bagherizadeh, S Biglari, F Behjati. (2016). The genotoxic and cytotoxic effects of bisphenol-A (BPA) in MCF-7 cell line and amniocytes. International Journal of Molecular and Cellular Medicine, 5( 1): 19– 29
3 E Allman, H Painter, J Samra, M Carrasquilla, M Llinás ( 2016). Metabolomic profiling of the malaria box reveals antimalarial target pathways. Antimicrobial Agents and Chemotherapy, 60, AAC. 01224– 01216.
4 P Alonso-Magdalena, S Morimoto, C Ripoll, E Fuentes, A Nadal. (2006). The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environmental Health Perspectives, 114( 1): 106– 112
https://doi.org/10.1289/ehp.8451 pmid: 16393666
5 P Alonso-Magdalena, A B Ropero, S Soriano, M García-Arévalo, C Ripoll, E Fuentes, I Quesada, Á Nadal. (2012). Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Molecular and Cellular Endocrinology, 355( 2): 201– 207
https://doi.org/10.1016/j.mce.2011.12.012 pmid: 22227557
6 L F Azevedo, Dechandt C R Porto, de Souza Rocha C Cristina, Carneiro M F Hornos, L C Alberici, F Jr Barbosa. (2019). Long-term exposure to bisphenol A or S promotes glucose intolerance and changes hepatic mitochondrial metabolism in male Wistar rats. Food and Chemical Toxicology, 132 : 110694
https://doi.org/10.1016/j.fct.2019.110694 pmid: 31344369
7 B A Beyer, M Fang, B Sadrian, J R Montenegro-Burke, W C Plaisted, B P C Kok, E Saez, T Kondo, G Siuzdak, L L Lairson. (2018). Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nature Chemical Biology, 14( 1): 22– 28
https://doi.org/10.1038/nchembio.2517 pmid: 29131145
8 A Blom, E Ekman, A Johannisson, L Norrgren, M Pesonen. (1998). Effects of xenoestrogenic environmental pollutants on the proliferation of a human breast cancer cell line (MCF-7). Archives of Environmental Contamination and Toxicology, 34( 3): 306– 310
https://doi.org/10.1007/s002449900322 pmid: 9504980
9 K A Brand, U Hermfisse. (1997). Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J, 11( 5): 388– 395
https://doi.org/10.1096/fasebj.11.5.9141507 pmid: 9141507
10 A N Brodsky, D C Odenwelder, S W Harcum. (2019). High extracellular lactate causes reductive carboxylation in breast tissue cell lines grown under normoxic conditions. PLoS One, 14( 6): e0213419
https://doi.org/10.1371/journal.pone.0213419 pmid: 31181081
11 M Chen, K Zhou, X Chen, S Qiao, Y Hu, B Xu, B Xu, X Han, R Tang, Z Mao, C Dong, D Wu, Y Wang, S Wang, Z Zhou, Y Xia, X Wang. (2014). Metabolomic analysis reveals metabolic changes caused by bisphenol-A in rats. Toxicological Sciences, 138( 2): 256– 267
https://doi.org/10.1093/toxsci/kfu016 pmid: 24449424
12 R Chen, G I Mias, J Li-Pook-Than, L Jiang, H Y Lam, R Chen, E Miriami, K J Karczewski, M Hariharan, F E Dewey. et al.. (2012). Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148( 6): 1293– 1307
https://doi.org/10.1016/j.cell.2012.02.009 pmid: 22424236
13 S Cobbold, M McConville. (2019). Determining the mode of action of antimalarial drugs using time-resolved lc-ms-based metabolite profiling. Methods in Molecular Biology, 1859 : 225– 239
14 S A Cobbold, H H Chua, B Nijagal, D J Creek, S A Ralph, M J McConville. (2016). Metabolic dysregulation induced in plasmodium falciparum by dihydroartemisinin and other front-line antimalarial drugs. The Journal of Infectious Diseases, 213( 2): 276– 286
https://doi.org/10.1093/infdis/jiv372 pmid: 26150544
15 Z Costello, H G Martin. (2018). A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data. NPJ Systems Biology and Applications, 4( 1): 19
https://doi.org/10.1038/s41540-018-0054-3 pmid: 29872542
16 G S Cowley, B A Weir, F Vazquez, P Tamayo, J A Scott, S Rusin, A East-Seletsky, L D Ali, W F Gerath, S E Pantel. et al.. (2014). Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Scientific Data, 1( 1): 140035
https://doi.org/10.1038/sdata.2014.35 pmid: 25984343
17 L Desquilbet, F Mariotti. (2010). Dose-response analyses using restricted cubic spline functions in public health research. Statistics in Medicine, 29( 9): 1037– 1057
https://doi.org/10.1002/sim.3841 pmid: 20087875
18 Y Duan, F Li, Y Li, Y Tang, X Kong, Z Feng, T G Anthony, M Watford, Y Hou, G Wu. et al.. (2016). The role of leucine and its metabolites in protein and energy metabolism. Amino Acids, 48( 1): 41– 51
https://doi.org/10.1007/s00726-015-2067-1 pmid: 26255285
19 A B Engin, A Engin. (2021). The effect of environmental bisphenol-A exposure on breast cancer associated with obesity. Environmental Toxicology and Pharmacology, 81 : 103544
https://doi.org/10.1016/j.etap.2020.103544 pmid: 33161112
20 X Fan, T Hou, J Jia, K Tang, X Wei, Z Wang. (2020). Discrepant dose responses of bisphenol-A on oxidative stress and DNA methylation in grass carp ovary cells. Chemosphere, 248 : 126110
https://doi.org/10.1016/j.chemosphere.2020.126110 pmid: 32041077
21 M Fang, J Ivanisevic, H P Benton, C H Johnson, G J Patti, L T Hoang, W Uritboonthai, M E Kurczy, G Siuzdak. (2015). Thermal degradation of small molecules: a global metabolomic investigation. Analytical Chemistry, 87( 21): 10935– 10941
https://doi.org/10.1021/acs.analchem.5b03003 pmid: 26434689
22 Q Fu, A Scheidegger, E Laczko, J Hollender. (2021). Metabolomic profiling and toxicokinetics modeling to assess the effects of the pharmaceutical diclofenac in the aquatic invertebrate Hyalella azteca. Environmental Science & Technology, 55( 12): 7920– 7929
https://doi.org/10.1021/acs.est.0c07887 pmid: 34086445
23 S Geng, B B Misra, E Armas, D V Huhman, H T Alborn, L W Sumner, S Chen. (2016). Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics. Plant Journal, 88( 6): 947– 962
https://doi.org/10.1111/tpj.13296 pmid: 27500669
24 J C Gould, L S Leonard, S C Maness, B L Wagner, K Conner, T Zacharewski, S Safe, D P McDonnell, K W Gaido. (1998). Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Molecular and Cellular Endocrinology, 142( 1–2): 203– 214
https://doi.org/10.1016/S0303-7207(98)00084-7 pmid: 9783916
25 W Guo, Z Shi, T Zeng, Y He, Z Cai, J Zhang. (2022). Metabolic study of aristolochic acid I-exposed mice liver by atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging and machine learning. Talanta, 241 : 123261
https://doi.org/10.1016/j.talanta.2022.123261 pmid: 35101835
26 A Halama, M M Aye, S R Dargham, M Kulinski, K Suhre, S L Atkin. (2019). Metabolomics of dynamic changes in insulin resistance before and after exercise in PCOS. Frontiers in Endocrinology (Lausanne), 10 : 116
https://doi.org/10.3389/fendo.2019.00116
27 K L Howdeshell, A K Hotchkiss, K A Thayer, J G Vandenbergh, F S vom Saal. (1999). Exposure to bisphenol A advances puberty. Nature, 401( 6755): 763– 764
https://doi.org/10.1038/44517 pmid: 10548101
28 S S Y Huang, J P Benskin, N Veldhoen, B Chandramouli, H Butler, C C Helbing, J R Cosgrove ( 2017). A multi-omic approach to elucidate low-dose effects of xenobiotics in Zebrafish (Danio rerio) larvae. Aquatic Toxicology (Amsterdam, Netherlands), 182: 102– 112
pmid: 27886581
29 K Inoue, B Ritz, G A Brent, R Ebrahimi, C M Rhee, A M Leung. (2020). Association of subclinical hypothyroidism and cardiovascular disease with mortality. JAMA Network Open, 3( 2): e1920745
https://doi.org/10.1001/jamanetworkopen.2019.20745 pmid: 32031647
30 M Jain, R Nilsson, S Sharma, N Madhusudhan, T Kitami, A L Souza, R Kafri, M W Kirschner, C B Clish, V K Mootha. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336( 6084): 1040– 1044
https://doi.org/10.1126/science.1218595 pmid: 22628656
31 S Jia, C Li, M Fang, M Marques Dos Santos, S A Snyder. (2022). Non-targeted metabolomics revealing the effects of bisphenol analogues on human liver cancer cells. Chemosphere, 297 : 134088
https://doi.org/10.1016/j.chemosphere.2022.134088 pmid: 35216976
32 C D L Johannesen, A Langsted, M B Mortensen, B G Nordestgaard. (2020). Association between low density lipoprotein and all cause and cause specific mortality in Denmark: prospective cohort study. BMJ (Clinical Research Ed.), 371 : m4266
https://doi.org/10.1136/bmj.m4266 pmid: 33293274
33 S Kalkhof, F Dautel, S Loguercio, S Baumann, S Trump, H Jungnickel, W Otto, S Rudzok, S Potratz, A Luch, I Lehmann, A Beyer, M von Bergen. (2015). Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure. Journal of Proteome Research, 14( 1): 164– 182
https://doi.org/10.1021/pr500957t pmid: 25362887
34 L Kennedy, J K Sandhu, M E Harper, M Cuperlovic-Culf. (2020). Role of glutathione in cancer: from mechanisms to therapies. Biomolecules, 10( 10): 1429
https://doi.org/10.3390/biom10101429 pmid: 33050144
35 M H P M Kerkhofs, H A Haijes, A M Willemsen, K L I van Gassen, M van der Ham, J Gerrits, M G M de Sain-van der Velden, H C M T Prinsen, H W M van Deutekom, P M van Hasselt, N M Verhoeven-Duif, J J M Jans. (2020). Cross-omics: integrating genomics with metabolomics in clinical diagnostics. Metabolites, 10( 5): 206
https://doi.org/10.3390/metabo10050206 pmid: 32443577
36 H Kim, J Choi, T Kim, N K Lokanath, S C Ha, S W Suh, H Y Hwang, K K Kim. (2010). Structural basis for the reaction mechanism of UDP-glucose pyrophosphorylase. Molecules and Cells, 29( 4): 397– 405
https://doi.org/10.1007/s10059-010-0047-6 pmid: 20238176
37 G M Kowalski, Souza D P De, M L Burch, S Hamley, J Kloehn, A Selathurai, D Tull, S O’Callaghan, M J McConville, C R Bruce. (2015). Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse. Biochemical and Biophysical Research Communications, 462( 1): 27– 32
https://doi.org/10.1016/j.bbrc.2015.04.096 pmid: 25930998
38 J R Krycer, K Yugi, A Hirayama, D J Fazakerley, L E Quek, R Scalzo, S Ohno, M P Hodson, S Ikeda, F Shoji. et al.. (2017). Dynamic metabolomics reveals that insulin primes the adipocyte for glucose metabolism. Cell Reports, 21( 12): 3536– 3547
https://doi.org/10.1016/j.celrep.2017.11.085 pmid: 29262332
39 N Kunz, E J Camm, E Somm, G Lodygensky, S Darbre, M L Aubert, P S Hüppi, S V Sizonenko, R Gruetter. (2011). Developmental and metabolic brain alterations in rats exposed to bisphenol A during gestation and lactation. International Journal of Developmental Neuroscience, 29( 1): 37– 43
https://doi.org/10.1016/j.ijdevneu.2010.09.009 pmid: 20955774
40 Y Lai, C W Liu, Y Yang, Y C Hsiao, H Ru, K Lu. (2021). High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice. Nature Communications, 12( 1): 6000
https://doi.org/10.1038/s41467-021-26209-8 pmid: 34667167
41 H J Lee, M P Jedrychowski, A Vinayagam, N Wu, N Shyh-Chang, Y Hu, C Min-Wen, J K Moore, J M Asara, C A Lyssiotis, N Perrimon, S P Gygi, L C Cantley, M W Kirschner. (2017). Proteomic and metabolomic characterization of a mammalian cellular transition from quiescence to proliferation. Cell Reports, 20( 3): 721– 736
https://doi.org/10.1016/j.celrep.2017.06.074 pmid: 28723573
42 L Li, H Hoefsloot, A Graaf, E Acar, A Smilde ( 2021). Exploring dynamic metabolomics data with multiway data analysis: a simulation study. BMC Bioinformatics 23, 31 ( 2022)
43 L Liang, M H Rasmussen, B Piening, X Shen, S Chen, H Rost, M Melbye. (2020). Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women. Cell, 181( 7): 1680– 1692
https://doi.org/10.1016/j.cell.2020.05.002
44 H Link, T Fuhrer, L Gerosa, N Zamboni, U Sauer. (2015). Real-time metabolome profiling of the metabolic switch between starvation and growth. Nature Methods, 12( 11): 1091– 1097
https://doi.org/10.1038/nmeth.3584 pmid: 26366986
45 H Link, K Kochanowski, U Sauer. (2013). Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. Nature Biotechnology, 31( 4): 357– 361
https://doi.org/10.1038/nbt.2489 pmid: 23455438
46 M Liu, S Jia, T Dong, F Zhao, T Xu, Q Yang, J Gong, M Fang. (2020). Metabolomic and transcriptomic analysis of MCF-7 cells exposed to 23 chemicals at human-relevant levels: estimation of individual chemical contribution to effects. Environmental Health Perspectives, 128( 12): 127008
https://doi.org/10.1289/EHP6641 pmid: 33325755
47 M Liu, J Jiang, J Zheng, T Huan, B Gao, X Fei, Y Wang, M Fang. (2021). RTP: one effective platform to probe reactive compound transformation products and its applications for a reactive plasticizer BADGE. Environmental Science & Technology, 55( 23): 16034– 16043
https://doi.org/10.1021/acs.est.1c05262 pmid: 34788994
48 H Lu, H Chen, X Tang, Q Yang, H Zhang, Y Q Chen, W Chen. (2020). Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation for TAG accumulation in oleaginous fungus Mortierella alpina. Biotechnology for Biofuels, 13( 1): 116
https://doi.org/10.1186/s13068-020-01757-1 pmid: 32625246
49 H Luan, H Zhao, J Li, Y Zhou, J Fang, H Liu, Y Li, W Xia, S Xu, Z Cai. (2021). Machine learning for investigation on endocrine-disrupting chemicals with gestational age and delivery time in a longitudinal cohort. Research (Wash D C), 2021 : 1
https://doi.org/10.34133/2021/9873135 pmid: 34755115
50 Y Lv, X Wang, X Li, G Xu, Y Bai, J Wu, Y Piao, Y Shi, R Xiang, L Wang. (2020). Nucleotide de novo synthesis increases breast cancer stemness and metastasis via cGMP-PKG-MAPK signaling pathway. PLoS Biology, 18( 11): e3000872
https://doi.org/10.1371/journal.pbio.3000872 pmid: 33186350
51 J P Mazat, S Ransac. (2019). The fate of glutamine in human metabolism: the interplay with glucose in Proliferating cells. Metabolites, 9( 5): 81
https://doi.org/10.3390/metabo9050081 pmid: 31027329
52 R Meli, A Monnolo, C Annunziata, C Pirozzi, M C Ferrante. (2020). Oxidative stress and BPA toxicity: an antioxidant approach for male and female reproductive dysfunction. Antioxidants (Basel), 9( 5): 405
https://doi.org/10.3390/antiox9050405 pmid: 32397641
53 C M Metallo, M G Vander Heiden. (2013). Understanding metabolic regulation and its influence on cell physiology. Molecular Cell, 49( 3): 388– 398
https://doi.org/10.1016/j.molcel.2013.01.018 pmid: 23395269
54 B A Moffatt, H Ashihara. (2002). Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book, 1 : 0018
https://doi.org/10.1199/tab.0018 pmid: 22303196
55 J D Moreira, M Hamraz, M Abolhassani, E Bigan, S Pérès, L Paulevé, M L Nogueira, J M Steyaert, L Schwartz. (2016). The redox status of cancer cells supports mechanisms behind the warburg effect. Metabolites, 6( 4): 33
https://doi.org/10.3390/metabo6040033 pmid: 27706102
56 R Moreno-Sánchez, E Saavedra, S Rodríguez-Enríquez, V Olín-Sandoval. (2008). Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. Journal of Biomedicine & Biotechnology, 2008 : 597913
https://doi.org/10.1155/2008/597913 pmid: 18629230
57 G Nyamundanda, I C Gormley, L Brennan. (2014). A dynamic probabilistic principal components model for the analysis of longitudinal metabolomics data. Applied Statistics, 63( 5): 763– 782
https://doi.org/10.1111/rssc.12060
58 E Ortiz-Villanueva, L Navarro-Martín, J Jaumot, F Benavente, V Sanz-Nebot, B Piña, R Tauler ( 2017). Metabolic disruption of Zebrafish ( Danio rerio) embryos by bisphenol A: an integrated metabolomic and transcriptomic approach . Environmental Pollution, 231( Pt 1): 22– 36
pmid: 28780062
59 J B Owen, D A Butterfield ( 2010). Measurement of oxidized/reduced glutathione ratio. Methods in Molecular Biology (Clifton, N.J.), 648: 269– 277
pmid: 20700719
60 B Peng, H Zhao, T P Keerthisinghe, Y Yu, D Chen, Y Huang, M Fang ( 2022). Gut microbial metabolite p-cresol alters biotransformation of bisphenol A: Enzyme competition or gene induction? Journal of Hazardous Materials, 426: 128093
61 O A C Petroff ( 2007). Metabolic Biopsy of the Brain. In: S. G. Waxman, ed. Molecular Neurology, 77– 100. San Diego: Academic Press
62 S Potratz, P Tarnow, H Jungnickel, S Baumann, M von Bergen, T Tralau, A Luch. (2017). Combination of metabolomics with cellular assays reveals new biomarkers and mechanistic insights on xenoestrogenic exposures in MCF-7 cells. Chemical Research in Toxicology, 30( 4): 883– 892
https://doi.org/10.1021/acs.chemrestox.6b00106 pmid: 27514991
63 L Quéméneur, L M Gerland, M Flacher, M Ffrench, J P Revillard, L Genestier ( 2003). Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. Journal of Immunology (Baltimore, Md.: 1950), 170( 10): 4986– 4995
pmid: 12734342
64 M M Rinschen, J Ivanisevic, M Giera, G Siuzdak. (2019). Identification of bioactive metabolites using activity metabolomics. Nature Reviews. Molecular Cell Biology, 20( 6): 353– 367
https://doi.org/10.1038/s41580-019-0108-4 pmid: 30814649
65 E L Schymanski, J Jeon, R Gulde, K Fenner, M Ruff, H P Singer, J Hollender. (2014). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science & Technology, 48( 4): 2097– 2098
https://doi.org/10.1021/es5002105 pmid: 24476540
66 A Slominski, M Zmijewski, J Pawelek. (2012). L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell & Melanoma Research, 25( 1): 14– 27
67 A K Smilde, J A Westerhuis, H C Hoefsloot, S Bijlsma, C M Rubingh, D J Vis, R H Jellema, H Pijl, F Roelfsema, J van der Greef. (2010). Dynamic metabolomic data analysis: a tutorial review. Metabolomics, 6( 1): 3– 17
https://doi.org/10.1007/s11306-009-0191-1 pmid: 20339444
68 C A Smith, G O’Maille, E J Want, C Qin, S A Trauger, T R Brandon, D E Custodio, R Abagyan, G Siuzdak. (2005). METLIN: a metabolite mass spectral database. Therapeutic Drug Monitoring, 27( 6): 747– 751
https://doi.org/10.1097/01.ftd.0000179845.53213.39
69 C A Smith, E J Want, G O’Maille, R Abagyan, G Siuzdak. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78( 3): 779– 787
https://doi.org/10.1021/ac051437y pmid: 16448051
70 P Spégel, V V Sharoyko, I Goehring, A P Danielsson, S Malmgren, C L Nagorny, L E Andersson, T Koeck, G W Sharp, S G Straub, C B Wollheim, H Mulder. (2013). Time-resolved metabolomics analysis of β-cells implicates the pentose phosphate pathway in the control of insulin release. Biochemical Journal, 450( 3): 595– 605
https://doi.org/10.1042/BJ20121349 pmid: 23282133
71 K J Sweeney, A Swarbrick, R L Sutherland, E A Musgrove. (1998). Lack of relationship between CDK activity and G1 cyclin expression in breast cancer cells. Oncogene, 16( 22): 2865– 2878
https://doi.org/10.1038/sj.onc.1201814 pmid: 9671407
72 F Tugizimana, A T Djami-Tchatchou, J F Fahrmann, P A Steenkamp, L A Piater, I A Dubery. (2019). Time-resolved decoding of metabolic signatures of in vitro growth of the hemibiotrophic pathogen Colletotrichum sublineolum. Scientific Reports, 9( 1): 3290
https://doi.org/10.1038/s41598-019-38692-7 pmid: 30824820
73 F Vahdati Hassani, K Abnous, S Mehri, A Jafarian, R Birner-Gruenberger, R Yazdian Robati, H Hosseinzadeh. (2018). Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food and Chemical Toxicology, 112 : 26– 38
https://doi.org/10.1016/j.fct.2017.12.021 pmid: 29269058
74 P R West, A M Weir, A M Smith, E L Donley, G G Cezar. (2010). Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicology and Applied Pharmacology, 247( 1): 18– 27
https://doi.org/10.1016/j.taap.2010.05.007 pmid: 20493898
75 G Wu, Y Z Fang, S Yang, J R Lupton, N D Turner. (2004). Glutathione metabolism and its implications for health. J Nutr, 134( 3): 489– 492
https://doi.org/10.1093/jn/134.3.489 pmid: 14988435
76 J Wu, Z Jin, H Zheng, L J Yan ( 2016). Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications . Diabetes, Metabolic Syndrome and Obesity, 9: 145– 153
pmid: 27274295
77 J Wu, F Wang, G Xie, Z Cai. (2022). Mass spectrometric determination of N7-HPTE-dG and N7-HPTE-Gua in mammalian cells and mice exposed to methoxychlor, an emergent persistent organic pollutant. Journal of Hazardous Materials, 432 : 128741
https://doi.org/10.1016/j.jhazmat.2022.128741 pmid: 35349845
78 T Xu, L Chen, Y T Lim, H Zhao, H Chen, M W Chen, T Huan, Y Huang, R M Sobota, M Fang. (2021a). System biology-guided chemical proteomics to discover protein targets of monoethylhexyl phthalate in regulating cell cycle. Environmental Science & Technology, 55( 3): 1842– 1851
https://doi.org/10.1021/acs.est.0c05832 pmid: 33459556
79 T Xu, Y T Lim, L Chen, H Zhao, J H Low, Y Xia, R M Sobota, M Fang. (2020). A novel mechanism of monoethylhexyl phthalate in lipid accumulation via inhibiting fatty acid beta-oxidation on hepatic cells. Environmental Science & Technology, 54( 24): 15925– 15934
https://doi.org/10.1021/acs.est.0c01073 pmid: 33225693
80 T Xu, H Zhao, M Wang, A Chow, M Fang. (2021b). Metabolomics and in Silico docking-directed discovery of small-molecule enzyme targets. Analytical Chemistry, 93( 6): 3072– 3081
https://doi.org/10.1021/acs.analchem.0c03684 pmid: 33541075
81 X Xu, L Wang, Q Zang, S Li, L Li, Z Wang, J He, B Qiang, W Han, R Zhang, X Peng, Z Abliz. (2021). Rewiring of purine metabolism in response to acidosis stress in glioma stem cells. Cell Death & Disease, 12( 3): 277
https://doi.org/10.1038/s41419-021-03543-9 pmid: 33723244
82 O Yanes, J Clark, D M Wong, G J Patti, A Sánchez-Ruiz, H P Benton, S A Trauger, C Desponts, S Ding, G Siuzdak. (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nature Chemical Biology, 6( 6): 411– 417
https://doi.org/10.1038/nchembio.364 pmid: 20436487
83 J Yin, W Ren, X Huang, J Deng, T Li, Y Yin. (2018). Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in Immunology, 9 : 1697
https://doi.org/10.3389/fimmu.2018.01697 pmid: 30105018
84 C Yuan, Y Zhang, Y Liu, T Zhang, Z Wang ( 2016). Enhanced GSH synthesis by bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus . Aquatic Toxicology (Amsterdam, Netherlands), 178: 99– 105
https://doi.org/doi:10.1016/j.aquatox.2016.07.015 pmid: 27474941
85 S Yue, J Yu, Y Kong, H Chen, M Mao, C Ji, S Shao, J Zhu, J Gu, M Zhao. (2019). Metabolomic modulations of HepG2 cells exposed to bisphenol analogues. Environment International, 129 : 59– 67
https://doi.org/10.1016/j.envint.2019.05.008 pmid: 31121516
86 N Zamboni, S M Fendt, M Rühl, U Sauer. (2009). 13C-based metabolic flux analysis. Nature Protocols, 4( 6): 878– 892
https://doi.org/10.1038/nprot.2009.58 pmid: 19478804
87 M Zampieri, K Sekar, N Zamboni, U Sauer. (2017). Frontiers of high-throughput metabolomics. Current Opinion in Chemical Biology, 36 : 15– 23
https://doi.org/10.1016/j.cbpa.2016.12.006 pmid: 28064089
88 T Zeng, Y Liang, Q Dai, J Tian, J Chen, B Lei, Z Yang, Z Cai ( 2022). Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles. Chinese Chemical Letters, doi:
https://doi.org/10.1016/j.cclet.2022.03.020
89 W Zhang, L Zhou, P Yin, J Wang, X Lu, X Wang, J Chen, X Lin, G Xu. (2015). A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma. Scientific Reports, 5( 1): 8984
https://doi.org/10.1038/srep08984 pmid: 25757957
90 F Zhao, L Li, Y Chen, Y Huang, T P Keerthisinghe, A Chow, T Dong, S Jia, S Xing, B Warth, T Huan, M Fang. (2021). Risk-based chemical ranking and generating a prioritized human exposome database. Environmental Health Perspectives, 129( 4): 047014
https://doi.org/10.1289/EHP7722 pmid: 33929905
91 H Zhao, M Liu, Y Lv, M Fang. (2022). Dose-response metabolomics and pathway sensitivity to map molecular cartography of bisphenol A exposure. Environment International, 158 : 106893
https://doi.org/10.1016/j.envint.2021.106893 pmid: 34592654
92 B M Zimmer, J J Barycki, M A Simpson. (2021). Integration of sugar metabolism and proteoglycan synthesis by UDP-glucose dehydrogenase. Journal of Histochemistry and Cytochemistry, 69( 1): 13– 23
https://doi.org/10.1369/0022155420947500 pmid: 32749901
[1] FSE-22052-OF-ZHD_suppl_1 Download
[1] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[2] Yong YU, Laosheng WU. Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis)[J]. Front. Environ. Sci. Eng., 2015, 9(3): 475-481.
[3] Liping LIANG,Jing ZHANG,Pian FENG,Cong LI,Yuying HUANG,Bingzhi DONG,Lina LI,Xiaohong GUAN. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies[J]. Front. Environ. Sci. Eng., 2015, 9(1): 16-38.
[4] Liqin JI, Xue BAI, Lincheng ZHOU, Hanchang SHI, Wei CHEN, Zulin HUA. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A[J]. Front Envir Sci Eng, 2013, 7(3): 442-450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed