Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 442-450    https://doi.org/10.1007/s11783-013-0515-2
RESEARCH ARTICLE
One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A
Liqin JI1,2, Xue BAI1,3(), Lincheng ZHOU2, Hanchang SHI1(), Wei CHEN3, Zulin HUA3
1. School of Environment, Tsinghua University, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, China; 2. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, China; 3. College of Environmental Science and Engineering, Hohai University, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake (Ministry of Education), Nanjing 210098, China
 Download: PDF(314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple solvothermal method was used to prepare monodisperse magnetite (Fe3O4) nanoparticles attached onto graphene oxide (GO) sheets as adsorbents to remove tetrabromobisphenol A (TBBPA) from an aqueous solution. These Fe3O4/GO (MGO) nanocomposites were characterized by transmission electron microscopy. The adsorption capacity at different initial pH, contact duration, and temperature were evaluated. The kinetics of adsorption was found to fit the pseudo-second-order model perfectly. The adsorption isotherm well fitted the Langmuir model, and the theoretical maximum of adsorption capacity calculated by the Langmuir model was 27.26 mg?g-1. The adsorption thermodynamics of TBBPA on the MGO nanocomposites was determined at 303 K, 313 K, and 323 K, respectively. The results indicated that the adsorption was spontaneous and endothermic. The MGO nanocomposites were conveniently separated from the media by an external magnetic field within several seconds, and then regenerated in 0.2 M NaOH solution. Thus, the MGO nanocomposites are a promising candidate for TBBPA removal from wastewater.

Keywords Magnetic      graphene oxide (GO)      adsorption      tetrabromobisphenol A (TBBPA)     
Corresponding Author(s): BAI Xue,Email:baixue@hhu.edu.cn; SHI Hanchang,Email:hanchang@mail.tsinghua.edu.cn   
Issue Date: 01 June 2013
 Cite this article:   
Liqin JI,Xue BAI,Lincheng ZHOU, et al. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A[J]. Front Envir Sci Eng, 2013, 7(3): 442-450.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0515-2
https://academic.hep.com.cn/fese/EN/Y2013/V7/I3/442
Fig.1  (a) and (b) are the TEM images of the MGO nanocomposites under different magnifications
Fig.2  Effect of the solution pH for TBBPA adsorption onto MGO
Fig.3  Different states of the adsorbent MGO and TBBPA in acidic and basic solutions
Fig.4  Effect of the contact duration for TBBPA adsorption onto MGO.
Fig.5  Pseudo-first-order kinetic plots (a) and Pseudo-second-order kinetic plots (b) for TBBPA adsorption onto MGO
Qexp /(mg?g-1)pseudo-first-orderpseudo-second-order
k1 /min-1Qe /(mg?g-1)R2k2/(g·(mg·min-1))Qe/(mg?g-1)R2
10.550.021996.6220.90010.00704210.930.9956
Tab.1  Parameters of the kinetic model for TBBPA adsorption onto MGO nanocomposites
Fig.6  Langmuir isotherm plots (a) and Freundlich isotherm plots (b) for TBBPA adsorption onto MGO
LangmuirFreundlich
temperature /KQmax /(mg?g-1)KL /(L?mg-1)R2KF(mg1-1/n·L1/n/g)nR2
30317.230.0110.99165.4932.8870.9709
31323.200.22290.99085.5332.2920.9846
32327.260.33980.98567.7452.3290.9648
Tab.2  Parameters of adsorption isotherms for TBBPA adsorption onto MGO nanocomposites
Fig.7  Plots of ln / at three temperatures
Fig.8  Linear plots of ln 1/ for TBBPA adsorption onto MGO nanocomposites
ΔH0 /(kJ?mol-1)ΔS0 /(J?(mol·K-1)ΔG0 /(kJ?mol-1)
303 K313 K323 K
-30.55122.55-6.60-6.92-9.05
Tab.3  Adsorption thermodynamic parameters for TBBPA adsorption onto MGO nanocomposites
Fig.9  Proposed the adsorption/desorption scheme for the removal of TBBPA on MGO nanocomposites
Fig.10  Reusability adsorption/desorption of TBBPA onto MGO
1 Sellstr?m U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere , 1995, 31(4): 3085-3092
doi: 10.1016/0045-6535(95)00167-7
2 Uhnáková B, Petrícková A, Biedermann D, HomolkaL, Vejvoda V, Bedná? P, Papou?ková B, ?ulcM, MartínkováL. Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere , 2009, 76(6): 826-832
doi: 10.1016/j.chemosphere.2009.04.016 pmid:19443012
3 Sun Z, Mao L, Xian Q, Yu Y, Li H, Yu H. Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils. Journal of Environmental Sciences (China) , 2008, 20(9): 1075-1081
doi: 10.1016/S1001-0742(08)62152-X pmid:19143314
4 Strack S, Detzel T, Wahl M, Kuch B, Krug H F. Cytotoxicity of TBBPA and effects on proliferation, cell cycle and MAPK pathways in mammalian cells. Chemosphere , 2007, 67(9): S405-S411
doi: 10.1016/j.chemosphere.2006.05.136 pmid:17254629
5 Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. Journal of Hazardous Materials , 2011, 192(3): 1515-1524
doi: 10.1016/j.jhazmat.2011.06.068 pmid:21782325
6 Sreeprasad T S, Maliyekkal S M, Lisha K P, Pradeep T. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. Journal of Hazardous Materials , 2011, 186(1): 921-931
doi: 10.1016/j.jhazmat.2010.11.100 pmid:21168962
7 Uhnáková B, Ludwig R, Pěknicová J, . Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresource Technology , 2011, 102(20): 9409-9415
doi: 10.1016/j.biortech.2011.07.036 pmid:21865031
8 Fasfous I I, Radwan E S, Dawoud J N. Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes. Applied Surface Science , 2010, 256(23): 7246-7252
doi: 10.1016/j.apsusc.2010.05.059
9 Wu T, Cai X, Tan S, Li H, Liu J, Yang W. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chemical Engineering Journal , 2011, 173(1): 144-149
doi: 10.1016/j.cej.2011.07.050
10 Li N, Zheng M, Chang X. Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. Journal of Solid State Chemistry , 2011, 184(4): 953-958
doi: 10.1016/j.jssc.2011.01.014
11 Wu X L, Wang L, Chen C L, Xu A W, Wang X K. Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. Journal of Materials Chemistry , 2011, 21(43): 17353-17359
doi: 10.1039/c1jm12678d
12 Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry , 2009, 19(18): 2710-2714
doi: 10.1039/b821416f
13 Shen J, Hu Y, Shi M, Li N, Ma H, Ye M. One step synthesis of graphene oxide-magnetic nanoparticle composite. Journal of Physical Chemistry C , 2010, 114(3): 1498-1503
doi: 10.1021/jp909756r
14 Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of graphene oxide. Chemical Society Reviews , 2010, 39(1): 228-240
doi: 10.1039/b917103g pmid:20023850
15 Zhao G, Li J, Wang X. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chemical Engineering Journal , 2011, 173(1): 185-190
doi: 10.1016/j.cej.2011.07.072
16 Cai X, Tan S, Lin M, et al. Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir , 2011, 27(12): 7828-7835
doi: 10.1021/la201499s pmid:21585214
17 Wu Q, Zhao G, Feng C, Wang C, Wang Z. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography. A , 2011, 1218(44): 7936-7942
doi: 10.1016/j.chroma.2011.09.027 pmid:21962496
18 Chen C, Hu J, Shao D, Li J, Wang X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). Journal of Hazardous Materials , 2009, 164(2-3): 923-928
doi: 10.1016/j.jhazmat.2008.08.089 pmid:18842337
19 Li Z, Sun Q, Gao M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angewandte Chemie (International ed.in English) , 2004, 44(1): 123-126
doi: 10.1002/anie.200460715 pmid:15599914
20 Ge S, Shi X, Sun K,. A Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. The Journal of Physical Chemistry C , 2009, 113(31): 13593-13599
doi: 10.1021/jp902953t pmid:20174618
21 Qin C, Shen J, Hu Y, Ye M. Facile attachment of magnetic nanoparticles to carbon nanotubes via robust linkages and its fabrication of magnetic nanocomposites. Composites Science and Technology , 2009, 69(3-4): 427-431
doi: 10.1016/j.compscitech.2008.11.011
22 Li B, Cao H, Shao J, Qu M, Warner J H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. Journal of Materials Chemistry , 2011, 21(13): 5069-5075
doi: 10.1039/c0jm03717f
23 He F, Fan J, Ma D, Zhang L, Leung C, Chan H L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon , 2010, 48(11): 3139-3144
doi: 10.1016/j.carbon.2010.04.052
24 Sun H, Cao L, Lu L. Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research , 2011, 4(6): 550-562
doi: 10.1007/s12274-011-0111-3
25 Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology , 2008, 42(24): 9005-9013
doi: 10.1021/es801777n pmid:19174865
26 Sun Z, Yu Y, Mao L, Feng Z, Yu H. Sorption behavior of tetrabromobisphenol A in two soils with different characteristics. Journal of Hazardous Materials , 2008, 160(2-3): 456-461
doi: 10.1016/j.jhazmat.2008.03.019 pmid:18423854
27 Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology , 2007, 41(24): 8295-8300
doi: 10.1021/es071230h pmid:18200854
28 Huang J, Huang K, Liu S, Luo Q, Shi S. Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. Journal of Colloid and Interface Science , 2008, 317(2): 434-441
doi: 10.1016/j.jcis.2007.09.077 pmid:17950301
29 Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials , 2006, 138(2): 304-310
doi: 10.1016/j.jhazmat.2006.05.076 pmid:16839663
30 Sheng G D, Shao D D, Ren X M,. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials , 2010, 178(1-3): 505-516
doi: 10.1016/j.jhazmat.2010.01.110 pmid:20153109
31 Vukovi? G D, Marinkovi? A D, ?kapin S D,. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal , 2011, 173(3): 855-865
doi: 10.1016/j.cej.2011.08.036
32 Donat R, Akdogan A, Erdem E, Cetisli H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science , 2005, 286(1): 43-52
doi: 10.1016/j.jcis.2005.01.045 pmid:15848401
[1] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[2] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[3] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[4] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[5] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[6] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[7] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[8] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[9] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[10] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[11] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[12] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[13] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[14] Keke Li, Huosheng Li, Tangfu Xiao, Gaosheng Zhang, Aiping Liang, Ping Zhang, Lianhua Lin, Zexin Chen, Xinyu Cao, Jianyou Long. Zero-valent manganese nanoparticles coupled with different strong oxidants for thallium removal from wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(2): 34-.
[15] Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha. Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(1): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed