|
|
One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A |
Liqin JI1,2, Xue BAI1,3( ), Lincheng ZHOU2, Hanchang SHI1( ), Wei CHEN3, Zulin HUA3 |
1. School of Environment, Tsinghua University, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100084, China; 2. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University, Lanzhou 730000, China; 3. College of Environmental Science and Engineering, Hohai University, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake (Ministry of Education), Nanjing 210098, China |
|
|
Abstract A simple solvothermal method was used to prepare monodisperse magnetite (Fe3O4) nanoparticles attached onto graphene oxide (GO) sheets as adsorbents to remove tetrabromobisphenol A (TBBPA) from an aqueous solution. These Fe3O4/GO (MGO) nanocomposites were characterized by transmission electron microscopy. The adsorption capacity at different initial pH, contact duration, and temperature were evaluated. The kinetics of adsorption was found to fit the pseudo-second-order model perfectly. The adsorption isotherm well fitted the Langmuir model, and the theoretical maximum of adsorption capacity calculated by the Langmuir model was 27.26 mg?g-1. The adsorption thermodynamics of TBBPA on the MGO nanocomposites was determined at 303 K, 313 K, and 323 K, respectively. The results indicated that the adsorption was spontaneous and endothermic. The MGO nanocomposites were conveniently separated from the media by an external magnetic field within several seconds, and then regenerated in 0.2 M NaOH solution. Thus, the MGO nanocomposites are a promising candidate for TBBPA removal from wastewater.
|
Keywords
Magnetic
graphene oxide (GO)
adsorption
tetrabromobisphenol A (TBBPA)
|
Corresponding Author(s):
BAI Xue,Email:baixue@hhu.edu.cn; SHI Hanchang,Email:hanchang@mail.tsinghua.edu.cn
|
Issue Date: 01 June 2013
|
|
1 |
Sellstr?m U, Jansson B. Analysis of tetrabromobisphenol A in a product and environmental samples. Chemosphere , 1995, 31(4): 3085-3092 doi: 10.1016/0045-6535(95)00167-7
|
2 |
Uhnáková B, Petrícková A, Biedermann D, HomolkaL, Vejvoda V, Bedná? P, Papou?ková B, ?ulcM, MartínkováL. Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere , 2009, 76(6): 826-832 doi: 10.1016/j.chemosphere.2009.04.016 pmid:19443012
|
3 |
Sun Z, Mao L, Xian Q, Yu Y, Li H, Yu H. Effects of dissolved organic matter from sewage sludge on sorption of tetrabromobisphenol A by soils. Journal of Environmental Sciences (China) , 2008, 20(9): 1075-1081 doi: 10.1016/S1001-0742(08)62152-X pmid:19143314
|
4 |
Strack S, Detzel T, Wahl M, Kuch B, Krug H F. Cytotoxicity of TBBPA and effects on proliferation, cell cycle and MAPK pathways in mammalian cells. Chemosphere , 2007, 67(9): S405-S411 doi: 10.1016/j.chemosphere.2006.05.136 pmid:17254629
|
5 |
Ai L, Zhang C, Chen Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. Journal of Hazardous Materials , 2011, 192(3): 1515-1524 doi: 10.1016/j.jhazmat.2011.06.068 pmid:21782325
|
6 |
Sreeprasad T S, Maliyekkal S M, Lisha K P, Pradeep T. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. Journal of Hazardous Materials , 2011, 186(1): 921-931 doi: 10.1016/j.jhazmat.2010.11.100 pmid:21168962
|
7 |
Uhnáková B, Ludwig R, Pěknicová J, . Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresource Technology , 2011, 102(20): 9409-9415 doi: 10.1016/j.biortech.2011.07.036 pmid:21865031
|
8 |
Fasfous I I, Radwan E S, Dawoud J N. Kinetics, equilibrium and thermodynamics of the sorption of tetrabromobisphenol A on multiwalled carbon nanotubes. Applied Surface Science , 2010, 256(23): 7246-7252 doi: 10.1016/j.apsusc.2010.05.059
|
9 |
Wu T, Cai X, Tan S, Li H, Liu J, Yang W. Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chemical Engineering Journal , 2011, 173(1): 144-149 doi: 10.1016/j.cej.2011.07.050
|
10 |
Li N, Zheng M, Chang X. Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties. Journal of Solid State Chemistry , 2011, 184(4): 953-958 doi: 10.1016/j.jssc.2011.01.014
|
11 |
Wu X L, Wang L, Chen C L, Xu A W, Wang X K. Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. Journal of Materials Chemistry , 2011, 21(43): 17353-17359 doi: 10.1039/c1jm12678d
|
12 |
Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. Journal of Materials Chemistry , 2009, 19(18): 2710-2714 doi: 10.1039/b821416f
|
13 |
Shen J, Hu Y, Shi M, Li N, Ma H, Ye M. One step synthesis of graphene oxide-magnetic nanoparticle composite. Journal of Physical Chemistry C , 2010, 114(3): 1498-1503 doi: 10.1021/jp909756r
|
14 |
Dreyer D R, Park S, Bielawski C W, Ruoff R S. The chemistry of graphene oxide. Chemical Society Reviews , 2010, 39(1): 228-240 doi: 10.1039/b917103g pmid:20023850
|
15 |
Zhao G, Li J, Wang X. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets. Chemical Engineering Journal , 2011, 173(1): 185-190 doi: 10.1016/j.cej.2011.07.072
|
16 |
Cai X, Tan S, Lin M, et al. Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability. Langmuir , 2011, 27(12): 7828-7835 doi: 10.1021/la201499s pmid:21585214
|
17 |
Wu Q, Zhao G, Feng C, Wang C, Wang Z. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography. A , 2011, 1218(44): 7936-7942 doi: 10.1016/j.chroma.2011.09.027 pmid:21962496
|
18 |
Chen C, Hu J, Shao D, Li J, Wang X. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). Journal of Hazardous Materials , 2009, 164(2-3): 923-928 doi: 10.1016/j.jhazmat.2008.08.089 pmid:18842337
|
19 |
Li Z, Sun Q, Gao M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angewandte Chemie (International ed.in English) , 2004, 44(1): 123-126 doi: 10.1002/anie.200460715 pmid:15599914
|
20 |
Ge S, Shi X, Sun K,. A Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. The Journal of Physical Chemistry C , 2009, 113(31): 13593-13599 doi: 10.1021/jp902953t pmid:20174618
|
21 |
Qin C, Shen J, Hu Y, Ye M. Facile attachment of magnetic nanoparticles to carbon nanotubes via robust linkages and its fabrication of magnetic nanocomposites. Composites Science and Technology , 2009, 69(3-4): 427-431 doi: 10.1016/j.compscitech.2008.11.011
|
22 |
Li B, Cao H, Shao J, Qu M, Warner J H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. Journal of Materials Chemistry , 2011, 21(13): 5069-5075 doi: 10.1039/c0jm03717f
|
23 |
He F, Fan J, Ma D, Zhang L, Leung C, Chan H L. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon , 2010, 48(11): 3139-3144 doi: 10.1016/j.carbon.2010.04.052
|
24 |
Sun H, Cao L, Lu L. Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research , 2011, 4(6): 550-562 doi: 10.1007/s12274-011-0111-3
|
25 |
Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology , 2008, 42(24): 9005-9013 doi: 10.1021/es801777n pmid:19174865
|
26 |
Sun Z, Yu Y, Mao L, Feng Z, Yu H. Sorption behavior of tetrabromobisphenol A in two soils with different characteristics. Journal of Hazardous Materials , 2008, 160(2-3): 456-461 doi: 10.1016/j.jhazmat.2008.03.019 pmid:18423854
|
27 |
Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology , 2007, 41(24): 8295-8300 doi: 10.1021/es071230h pmid:18200854
|
28 |
Huang J, Huang K, Liu S, Luo Q, Shi S. Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. Journal of Colloid and Interface Science , 2008, 317(2): 434-441 doi: 10.1016/j.jcis.2007.09.077 pmid:17950301
|
29 |
Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. Journal of Hazardous Materials , 2006, 138(2): 304-310 doi: 10.1016/j.jhazmat.2006.05.076 pmid:16839663
|
30 |
Sheng G D, Shao D D, Ren X M,. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials , 2010, 178(1-3): 505-516 doi: 10.1016/j.jhazmat.2010.01.110 pmid:20153109
|
31 |
Vukovi? G D, Marinkovi? A D, ?kapin S D,. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal , 2011, 173(3): 855-865 doi: 10.1016/j.cej.2011.08.036
|
32 |
Donat R, Akdogan A, Erdem E, Cetisli H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. Journal of Colloid and Interface Science , 2005, 286(1): 43-52 doi: 10.1016/j.jcis.2005.01.045 pmid:15848401
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|