Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (2) : 16    https://doi.org/10.1007/s11783-023-1616-1
RESEARCH ARTICLE
Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water
Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen(), Xing Xie()
School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
 Download: PDF(9208 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Present a general concept called “salinity exchange”.

● Salts transferred from seawater to treated wastewater until completely switch.

● Process demonstrated using a laboratory-scale electrodialysis system.

● High-quality desalinated water obtained at ~1 mL/min consuming < 1 kWh/m 3 energy.

Two-thirds of the world’s population has limited access to potable water. As we continue to use up our freshwater resources, new and improved techniques for potable water production are warranted. Here, we present a general concept called “salinity exchange” that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch, thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source. We have demonstrated this process using electrodialysis. Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions. Laboratory-scale salinity exchange electrodialysis (SEE) systems can produce high-quality desalinated water at ~1 mL/min with an energy consumption less than 1 kWh/m3. SEE has also been operated using real water, and the challenges of its implementation at a larger scale are evaluated.

Keywords Desalination      Potable water reuse      Ion-exchange membrane      Salinity gradient energy      Wastewater discharge     
Corresponding Author(s): Yongsheng Chen,Xing Xie   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 05 September 2022
 Cite this article:   
Mourin Jarin,Zeou Dou,Haiping Gao, et al. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water[J]. Front. Environ. Sci. Eng., 2023, 17(2): 16.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1616-1
https://academic.hep.com.cn/fese/EN/Y2023/V17/I2/16
Fig.1  Operation of a salinity exchange electrodialysis (SEE) system.
Fig.2  Demonstration of the SEE process with simulated seawater (0.6 mol/L NaCl) and domestic wastewater (0.01 mol/L NaCl). (a) Voltage profile and salinity change of the two streams in a typical SEE operation and (b) energy consumption of the SEE process at different current densities. In (a) the blue curve represents the measured voltage over time with the shaded portions above and below representing the energy generation and consumption phases.
Fig.3  Performance of SEE process with different feed streams. (a) Energy consumption of the SEE process with various initial NaCl concentrations of Stream I (0.1–0.6 mol/L) and a fixed initial NaCl concentration of Stream II (0.01 mol/L), (b) energy consumption of the SEE process with a fixed initial NaCl concentration of Stream I (0.6 mol/L) and various initial NaCl concentrations of Stream II (0.01–0.03 mol/L), (c) energy consumption of conventional electrodialysis (CE) processes with both streams of 0.6 mol/L NaCl at different current densities, and (d) SEE demonstrated with treated domestic wastewater and seawater.
1 A Achilli, T Y Cath, A E Childress ( 2009). Power generation with pressure retarded osmosis: a n experimental and theoretical investigation. Journal of Membrane Science, 343( 1– 2): 42– 52
https://doi.org/10.1016/j.memsci.2009.07.006
2 A Al-Karaghouli, D Renne, L L Kazmerski. (2010). Technical and economic assessment of photovoltaic-driven desalination systems. Renewable Energy, 35( 2): 323– 328
https://doi.org/10.1016/j.renene.2009.05.018
3 S Baggett, P Jeffrey, B Jefferson. (2006). Risk perception in participatory planning for water reuse. Desalination, 187( 1–3): 149– 158
https://doi.org/10.1016/j.desal.2005.04.075
4 T N Bitaw, K Park, D R Yang. (2016). Optimization on a new hybrid forward osmosis-electrodialysis-reverse osmosis seawater desalination process. Desalination, 398 : 265– 281
https://doi.org/10.1016/j.desal.2016.07.032
5 G Blandin, A R D Verliefde, J Comas, I Rodriguez-Roda, P Le-Clech. (2016). Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review. Membranes (Basel), 6( 3): 37
https://doi.org/10.3390/membranes6030037 pmid: 27376337
6 E Brauns ( 2010). An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy. Desalination and Water Treatment, 13( 1– 3): 53– 62
https://doi.org/10.5004/dwt.2010.1090
7 A Cipollina, G Micale, A Tamburini, M Tedesco, L Gurreri, J Veerman, S Grasman. (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 135– 180
8 C O S Diego ( 2013). Water Purification Demonstration Project. Project Report
9 S Dolnicar, A Hurlimann, B Grün ( 2011). What affects public acceptance of recycled and desalinated water? Water Research, 45( 2): 933– 943
https://doi.org/10.1016/j.watres.2010.09.030 pmid: 20950834
10 Dolnicar S, Schäfer A I (2006). Public perception of desalinated versus recycled water in Australia
11 S Dolnicar, A I Schäfer. (2009). Desalinated versus recycled water: public perceptions and profiles of the accepters. Journal of Environmental Management, 90( 2): 888– 900
https://doi.org/10.1016/j.jenvman.2008.02.003 pmid: 18433981
12 P Du Pisani, J G Menge. (2013). Direct potable reclamation in Windhoek: a critical review of the design philosophy of new Goreangab drinking water reclamation plant. Water Science and Technology: Water Supply, 13( 2): 214– 226
https://doi.org/10.2166/ws.2013.009
13 J Eke, A Yusuf, A Giwa, A Sodiq. (2020). The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination, 495 : 114633
https://doi.org/10.1016/j.desal.2020.114633
14 M Elimelech, W A Phillip. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333( 6043): 712– 717
https://doi.org/10.1126/science.1200488 pmid: 21817042
15 K Elsaid, E T Sayed, M A Abdelkareem, M S Mahmoud, M Ramadan, A G Olabi. (2020). Environmental impact of emerging desalination technologies: a preliminary evaluation. Journal of Environmental Chemical Engineering, 8( 5): 104099
https://doi.org/10.1016/j.jece.2020.104099
16 J D Englehardt, T Wu, F Bloetscher, Y Deng, P Du Pisani, S Eilert, S Elmir, T Guo, J Jacangelo, M Lechevallier, H Leverenz, E Mancha, E Plater-Zyberk, B Sheikh, E Steinle-Darling, G Tchobanoglous. (2016). Net-zero water management: achieving energy-positive municipal water supply. Environmental Science. Water Research & Technology, 2( 2): 250– 260
https://doi.org/10.1039/C5EW00204D
17 H Fan, N Y Yip. (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573 : 668– 681
https://doi.org/10.1016/j.memsci.2018.11.045
18 C Fernandez-Gonzalez, A Dominguez-Ramos, R Ibañez, A Irabien. (2019). Current Trends and Future Developments on (Bio-) Membranes. Boston: Elsevier, 111– 131
19 C Fritzmann, J Löwenberg, T Wintgens, T Melin. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216( 1): 1– 76
https://doi.org/10.1016/j.desal.2006.12.009
20 A H Galama, M Saakes, H Bruning, H H M Rijnaarts, J W Post. (2014). Seawater predesalination with electrodialysis. Desalination, 342 : 61– 69
https://doi.org/10.1016/j.desal.2013.07.012
21 D Ghernaout, N Elboughdiri, A Alghamdi. (2019). Direct potable reuse: the Singapore NEWater project as a role model. OAlib, 6( 12): 1– 10
https://doi.org/10.4236/oalib.1105980
22 M C Gilstrap ( 2013). Renewable Electricity from Salinity Gradients Using Reverse Electrodialysis. Atlanta: Georgia Institute of Technology
23 S B Grant, J D Saphores, D L Feldman, A J Hamilton, T D Fletcher, P L M Cook, M Stewardson, B F Sanders, L A Levin, R F Ambrose. et al.. (2012). Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science, 337( 6095): 681– 686
https://doi.org/10.1126/science.1216852 pmid: 22879506
24 T Guo, J D Englehardt. (2015). Principles for scaling of distributed direct potable water reuse systems: a modeling study. Water Research, 75 : 146– 163
https://doi.org/10.1016/j.watres.2015.02.033 pmid: 25768987
25 V K Indusekhar, N Krishnaswamy. (1985). Water transport studies on interpolymer ion-exchange membranes. Desalination, 52( 3): 309– 316
https://doi.org/10.1016/0011-9164(85)80040-0
26 A S Johnson, H O Hillestad, S F Shanholtzer, G F Shanholtzer, U S N P Service ( 1974). An Ecological Survey of the Coastal Region of Georgia. Atlanta: National Park Service
27 S A Kalogirou. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31( 3): 242– 281
https://doi.org/10.1016/j.pecs.2005.03.001
28 M Kurihara. (2021). Current status and future trend of dominant commercial reverse osmosis membranes. Membranes (Basel), 11( 11): 906
https://doi.org/10.3390/membranes11110906 pmid: 34832135
29 O Lefebvre. (2018). Beyond NEWater: an insight into Singapore’s water reuse prospects. Current Opinion in Environmental Science & Health, 2 : 26– 31
https://doi.org/10.1016/j.coesh.2017.12.001
30 H L Leverenz, G Tchobanoglous, T Asano. (2011). Direct potable reuse: a future imperative. Journal of Water Reuse and Desalination, 1( 1): 2– 10
https://doi.org/10.2166/wrd.2011.000
31 W Li, W B Krantz, E R Cornelissen, J W Post, A R D Verliefde, C Y Tang. (2013). A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 104 : 592– 602
https://doi.org/10.1016/j.apenergy.2012.11.064
32 Y Liu, C Nie, X Liu, X Xu, Z Sun, L Pan. (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5( 20): 15205– 15225
https://doi.org/10.1039/C4RA14447C
33 B E Logan, M Elimelech. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488( 7411): 313– 319
https://doi.org/10.1038/nature11477 pmid: 22895336
34 F Luo, Y Wang, C Jiang, B Wu, H Feng, T Xu. (2017). A power free electrodialysis (PFED) for desalination. Desalination, 404 : 138– 146
https://doi.org/10.1016/j.desal.2016.11.011
35 J S Marks ( 2006). Taking the public seriously: the case of potable and non potable reuse. Desalination, 187( 1– 3): 137– 147
https://doi.org/10.1016/j.desal.2005.04.074
36 M M Mekonnen, A Y Hoekstra. (2016). Four billion people facing severe water scarcity. Science Advances, 2( 2): e1500323
https://doi.org/10.1126/sciadv.1500323 pmid: 26933676
37 A Morel, K Zuo, X Xia, J Wei, X Luo, P Liang, X Huang. (2012). Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Reviews in Chemical Engineering, 118( 1): 43– 48
pmid: 22695145
38 J Y Nam, K S Hwang, H C Kim, H Jeong, H Kim, E Jwa, S Yang, J Choi, C S Kim, J H Han, N Jeong. (2019). Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Research, 148 : 261– 271
https://doi.org/10.1016/j.watres.2018.10.054 pmid: 30388527
39 C G Patel, D Barad, J Swaminathan. (2022). Desalination using pressure or electric field? a fundamental comparison of RO and electrodialysis. Desalination, 530 : 115620
https://doi.org/10.1016/j.desal.2022.115620
40 S K Patel, P M Biesheuvel, M Elimelech. (2021). Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering, 1( 5): 851– 864
41 B M Pecson, S C Triolo, S Olivieri, E C Chen, A N Pisarenko, C C Yang, A Olivieri, C N Haas, R S Trussell, R R Trussell. (2017). Reliability of pathogen control in direct potable reuse: Performance evaluation and QMRA of a full-scale 1 MGD advanced treatment train. Water Research, 122 : 258– 268
https://doi.org/10.1016/j.watres.2017.06.014 pmid: 28609729
42 J Pellegrino, C Gorman, L Richards. (2007). A speculative hybrid reverse osmosis/electrodialysis unit operation. Desalination, 214( 1): 11– 30
https://doi.org/10.1016/j.desal.2006.09.024
43 B Pilat. (2001). Practice of water desalination by electrodialysis. Desalination, 139( 1): 385– 392
https://doi.org/10.1016/S0011-9164(01)00338-1
44 M Qasim, M Badrelzaman, N N Darwish, N A Darwish, N Hilal. (2019). Reverse osmosis desalination: a state-of-the-art review. Desalination, 459 : 59– 104
https://doi.org/10.1016/j.desal.2019.02.008
45 S Rajindar ( 2015). Membrane Technology and Engineering for Water Purification, 2nd ed. Oxford: Butterworth-Heinemann
46 G Z Ramon, B J Feinberg, E M V Hoek. (2011). Membrane-based production of salinity-gradient power. Energy & Environmental Science, 4( 11): 4423– 4434
https://doi.org/10.1039/c1ee01913a
47 M Roman, L Gutierrez, L H Van Dijk, M Vanoppen, J W Post, B A Wols, E R Cornelissen, A R D Verliefde. (2020). Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination. Separation and Purification Technology, 252 : 117487
https://doi.org/10.1016/j.seppur.2020.117487
48 M Roman, L H Van Dijk, L Gutierrez, M Vanoppen, J W Post, B A Wols, E R Cornelissen, A R D Verliefde. (2019). Key physicochemical characteristics governing organic micropollutant adsorption and transport in ion-exchange membranes during reverse electrodialysis. Desalination, 468 : 114084
https://doi.org/10.1016/j.desal.2019.114084
49 M Sadrzadeh, T Mohammadi. (2009). Treatment of sea water using electrodialysis: current efficiency evaluation. Desalination, 249( 1): 279– 285
https://doi.org/10.1016/j.desal.2008.10.029
50 R Semiat. (2008). Energy issues in desalination processes. Environmental Science & Technology, 42( 22): 8193– 8201
https://doi.org/10.1021/es801330u pmid: 19068794
51 R Semiat, D Hasson ( 2012). Water desalination. Reviews in Chemical Engineering, 28( 1): 43– 60
52 T Seto, L Ehara, R Komori, A Yamaguchi, T Miwa. (1978). Seawater desalination by electrodialysis. Desalination, 25( 1): 1– 7
https://doi.org/10.1016/S0011-9164(00)82440-6
53 R Singh, N P Hankins ( 2016). Emerging Membrane Technology for Sustainable Water Treatment. Boston: Elsevier
54 S E Skilhagen, J E Dugstad, R J Aaberg ( 2008). Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination, 220( 1– 3): 476– 482
https://doi.org/10.1016/j.desal.2007.02.045
55 K S Spiegler, Y M El-Sayed. (2001). The energetics of desalination processes. Desalination, 134( 1): 109– 128
https://doi.org/10.1016/S0011-9164(01)00121-7
56 , AWWA, WEF SMCAPHA( 2005). Standard Methods for the Examination of Water and Wastewater. New York: Standard Methods Committee of the American Public Health Association, American Water Works Association, Water Environment Federation
57 A Subramani, J G Jacangelo. (2015). merging desalination technologies for water treatment: a critical review. Water Research, 75 : 164– 187
https://doi.org/10.1016/j.watres.2015.02.032 pmid: 25770440
58 S K Thampy, P K Narayanan, W P Harkare, K P Govindan. (1988). Seawater desalination by electrodialysis. Part II: a novel approach to combat scaling in seawater desalination by electrodialysis. Desalination, 69( 3): 261– 273
https://doi.org/10.1016/0011-9164(88)80029-8
59 R Valladares Linares, Z Li, S Sarp, S S Bucs, G Amy, J S Vrouwenvelder. (2014). Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 66 : 122– 139
https://doi.org/10.1016/j.watres.2014.08.021 pmid: 25201336
60 M Vanoppen, G Blandin, S Derese, P Le Clech, J Post, A R D Verliefde. (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 281– 313
61 M Vanoppen, T Van Vooren, L Gutierrez, M Roman, L J P Croué, K Verbeken, J Philips, A R D Verliefde ( 2019). Secondary treated domestic wastewater in reverse electrodialysis: What is the best pre-treatment? Separation and Purification Technology, 218: 25– 42
https://doi.org/10.1016/j.seppur.2018.12.057
62 Y M Volfkovich. (2020). Capacitive deionization of water: a review. Russian Journal of Electrochemistry, 56( 1): 18– 51
https://doi.org/10.1134/S1023193520010097
63 V Yangali-Quintanilla, Z Li, R Valladares, Q Li, G Amy ( 2011). Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination, 280( 1– 3): 160– 166
https://doi.org/10.1016/j.desal.2011.06.066
64 N Y Yip, M Elimelech. (2012). Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environmental Science & Technology, 46( 9): 5230– 5239
https://doi.org/10.1021/es300060m pmid: 22463483
65 P G Youssef, R K Al-Dadah, S M Mahmoud. (2014). Comparative analysis of desalination technologies. Energy Procedia, 61 : 2604– 2607
https://doi.org/10.1016/j.egypro.2014.12.258
[1] FSE-22062-OF-JM_suppl_1 Download
[1] Jie Liu, Junjun Ma, Weizhang Zhong, Jianrui Niu, Zaixing Li, Xiaoju Wang, Ge Shen, Chun Liu. Penicillin fermentation residue biochar as a high-performance electrode for membrane capacitive deionization[J]. Front. Environ. Sci. Eng., 2023, 17(4): 51-.
[2] Hanqing Fan, Yuxuan Huang, Ngai Yin Yip. Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities[J]. Front. Environ. Sci. Eng., 2023, 17(2): 25-.
[3] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[4] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[5] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[6] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[7] Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN. Comparison of the removal of monovalent and divalent cations in the microbial desalination cell[J]. Front. Environ. Sci. Eng., 2015, 9(2): 317-323.
[8] Xue JIN,Jiangyong HU. Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 164-170.
[9] Zhigang LIU, Shaomin ZHU, Yansheng LI. A new regeneration approach to cation resins with aluminum salts: application of desalination by its mixed bed[J]. Front Envir Sci Eng, 2012, 6(1): 45-50.
[10] LIU Zhigang, WANG Ying, LI Yansheng, CHANG Hui. Electro-assisted regeneration of ion exchange resins[J]. Front.Environ.Sci.Eng., 2008, 2(4): 410-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed