Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (4) : 51    https://doi.org/10.1007/s11783-023-1651-y
RESEARCH ARTICLE
Penicillin fermentation residue biochar as a high-performance electrode for membrane capacitive deionization
Jie Liu1,2, Junjun Ma1,2(), Weizhang Zhong1,2, Jianrui Niu1,2(), Zaixing Li1,2, Xiaoju Wang1,2, Ge Shen1,2, Chun Liu1,2()
1. School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
2. Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
 Download: PDF(20964 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● We have provided an activated method to remove the toxicity of antibiotic residue.

● PFRB can greatly improve the salt adsorption capacity of MCDI.

● The hierarchical porous and abundant O/N-doped played the key role for the high-capacity desalination.

● A new field of reuse of penicillin fermentation residue has been developed.

Membrane capacitive deionization (MCDI) is an efficient desalination technology for brine. Penicillin fermentation residue biochar (PFRB) possesses a hierarchical porous and O/N-doped structure which could serve as a high-capacity desalination electrode in the MCDI system. Under optimal conditions (electrode weight, voltage, and concentration) and a carbonization temperature of 700 °C, the maximum salt adsorption capacity of the electrode can reach 26.4 mg/g, which is higher than that of most carbon electrodes. Furthermore, the electrochemical properties of the PFRB electrode were characterized through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with a maximum specific capacitance of 212.18 F/g. Finally, biotoxicity tests have showed that PFRB was non-biotoxin against luminescent bacteria and the MCDI system with the PFRB electrode remained stable even after 27 adsorption–desorption cycles. This study provides a novel way to recycle penicillin residue and an electrode that can achieve excellent desalination.

Keywords Membrane capacitive deionization (MCDI)      Penicillin fermentation residue biochar (PFRB)      Hierarchical porous      O/N-doped      Desalination     
Corresponding Author(s): Junjun Ma,Jianrui Niu,Chun Liu   
Issue Date: 22 November 2022
 Cite this article:   
Jie Liu,Junjun Ma,Weizhang Zhong, et al. Penicillin fermentation residue biochar as a high-performance electrode for membrane capacitive deionization[J]. Front. Environ. Sci. Eng., 2023, 17(4): 51.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1651-y
https://academic.hep.com.cn/fese/EN/Y2023/V17/I4/51
Fig.1  SEM images of PFRBs. (a)–(c) Morphologies of PFRB-600, PFRB-700, and PFRB-800; (d) EDS graphics of PFRB-700.
Material Vtota (cm3/g) Vmes (cm3/g) Vmica (cm3/g) SBET (m2/g) Average pore size (nm)
PFRB-600 0.30 0.06 0.24 537 2.24
PFRB-700 0.51 0.13 0.38 1171 1.74
PFRB-800 1.00 0.51 0.49 2118 1.88
Tab.1  Comparison of specific surface area, pore volume, and pore size of PFRB at different carbonization temperatures
Fig.2  Nitrogen adsorption–desorption curve (a) and pore size distribution (b).
Material C (%) O (%) N (%)
PFRB-600 76.77 14.59 8.64
PFRB-700 74.73 21.77 3.5
PFRB-800 84.53 12.07 3.4
Tab.2  Element content percentage from XPS
Fig.3  XPS of PFRBs at different carbonization temperatures. (a)–(c) O 1s peaks of PFRB-600, PFRB-700, and PFRB-800, respectively; (d)–(f) N 1s peaks of PFRB-600, PFRB-700, and PFRB-800, respectively.
Fig.4  Influence of electrodes at different carbonization temperatures on the desalination performance of the MCDI system. (a) Change in electrical conductivity of electrodes at different carbonization temperatures with time; (b) SAC of electrodes at different carbonization temperatures; (c) SRR, CE, SEC, and ASAR of electrodes at different carbonization temperatures; (d) Ragone diagram of electrodes at different carbonization temperatures.
Fig.5  Influence of different influent salt concentrations on desalination performance. (a) Change in conductivity of PFRB-700-0.36 with time under different influent salt concentrations; (b) SAC of PFRB-700-0.36 under different influent salt concentrations; (c) SAC, CE, SEC, and ASAR of PFRB-700-0.36 under different influent salt concentrations; (d) Ragone diagram of PFRB-700-0.36 under different influent salt concentrations.
Fig.6  Electrochemical characterization and cyclic stability. (a) CV diagram of electrode sheets at different carbonization temperatures; (b) CV diagrams of PFRB-700 with different masses; (c) EIS diagram of electrode sheets; (d) Cyclic stability of PFRB-700-0.36.
Fig.7  Biotoxicity tests for PFRB-600, PFRB-700, and PFRB-800. (a) Electrode active material; (b) mixture of electrode materials and water; (c) biotoxicity inhibition rates of PFRB-600, PFRB-700, and PFRB-800.
1 H D Atoufi, H Hasheminejad, D J Lampert. (2020). Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction. Frontiers of Environmental Science & Engineering, 14(6): 99
https://doi.org/10.1007/s11783-020-1278-1
2 W Bao, X Tang, X Guo, S Choi, C Wang, Y Gogotsi, G Wang. (2018). Porous cryo-dried MXene for efficient capacitive deionization. Joule, 2(4): 778–787
https://doi.org/10.1016/j.joule.2018.02.018
3 K M Barcelos, K S G C Oliveira, L A M Ruotolo. (2020). Insights on the role of interparticle porosity and electrode thickness on capacitive deionization performance for desalination. Desalination, 492: 114594
https://doi.org/10.1016/j.desal.2020.114594
4 L Dai, Q Lu, H Zhou, F Shen, Z Liu, W Zhu, H Huang. (2021). Tuning oxygenated functional groups on biochar for water pollution control: a critical review. Journal of Hazardous Materials, 420: 126547
https://doi.org/10.1016/j.jhazmat.2021.126547
5 H Gomaa, M A Shenashen, A Elbaz, H Yamaguchi, M Abdelmottaleb, S A El-Safty. (2021). Mesoscopic engineering materials for visual detection and selective removal of copper ions from drinking and waste water sources. Journal of Hazardous Materials, 406: 124314
https://doi.org/10.1016/j.jhazmat.2020.124314
6 B Han, G Cheng, Y Wang, X Wang. (2019). Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chemical Engineering Journal, 360: 364–384
https://doi.org/10.1016/j.cej.2018.11.236
7 C Hong, Y Li, Y Si, Z Li, Y Xing, X Chang, Z Zheng, J Hu, X Zhao. (2021). Catalytic upgrading of penicillin fermentation residue bio-oil by metal-supported HZSM-5. Science of the Total Environment, 767: 144977
https://doi.org/10.1016/j.scitotenv.2021.144977
8 C H Hou, C Y Huang, C Y Hu. (2013). Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. International Journal of Environmental Science and Technology, 10(4): 753–760
https://doi.org/10.1007/s13762-013-0232-1
9 M D Huff, J W Lee. (2016). Biochar-surface oxygenation with hydrogen peroxide. Journal of Environmental Management, 165: 17–21
https://doi.org/10.1016/j.jenvman.2015.08.046
10 P T. Juchen, K M. Barcelos, K S.G.C. Oliveira, L A.M. Ruotolo. (2022). Using crude residual glycerol as precursor of sustainable activated carbon electrodes for capacitive deionization desalination. Chemical Engineering Journal, 429: 132209
https://doi.org/10.1016/j.cej.2021.132209
11 Y H Kim, K Tang, J Chang, K Sharma, S Yiacoumi, R T Mayes, H Z Bilheux, L J Santodonato, C Tsouris. (2019). Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis. Separation Science and Technology, 54(13): 2112–2125
https://doi.org/10.1080/01496395.2019.1608243
12 L Kong, X Liu. (2020). Emerging electrochemical processes for materials recovery from wastewater: mechanisms and prospects. Frontiers of Environmental Science & Engineering, 14(5): 90
https://doi.org/10.1007/s11783-020-1269-2
13 J J Lado, R L Zornitta, F A Calvi, M Martins, M A Anderson, F G E Nogueira, L A M Ruotolo. (2017). Enhanced capacitive deionization desalination provided by chemical activation of sugar cane bagasse fly ash electrodes. Journal of Analytical and Applied Pyrolysis, 126: 143–153
https://doi.org/10.1016/j.jaap.2017.06.014
14 J J. Lado, R L. Zornitta, Rodríguez I Vázquez, Barcelos K Malverdi, L A. M. Ruotolo. (2019). Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications. ACS Sustainable Chemistry & Engineering, 7(23): 18992–19004
https://doi.org/10.1021/acssuschemeng.9b04504
15 H Li, S Liang, J Li, L He. (2013). The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(21): 6335–6341
https://doi.org/10.1039/c3ta10681k
16 M Li, S Liang, Y Wu, M Yang, X Huang. (2020). Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration. Frontiers of Environmental Science & Engineering, 14(6): 107
https://doi.org/10.1007/s11783-020-1286-1
17 Q Liu, S J Zhang, C C Xiang, C X Luo, P F Zhang, C G Shi, Y Zhou, J T Li, L Huang, S G Sun. (2020a). Cubic MnS-FeS2 composites derived from a prussian blue analogue as anode materials for Sodium-Ion batteries with long-term cycle stability. ACS Applied Materials & Interfaces, 12(39): 43624–43633
https://doi.org/10.1021/acsami.0c10874
18 T Liu, J Serrano, J Elliott, X Yang, W Cathcart, Z Wang, Z He, G Liu. (2020b). Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. Science Advance, 6: 8157–8168
19 Y Liu, T Lu, Z Sun, D H C Chua, L Pan. (2015). Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(16): 8693–8700
https://doi.org/10.1039/C5TA00435G
20 Y Ma, D Yao, H Liang, J Yin, Y Xia, K Zuo, Y P Zeng. (2020). Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochimica Acta, 352: 136452
https://doi.org/10.1016/j.electacta.2020.136452
21 J Nieszporek, D Gugała‐Fekner, K Nieszporek. (2019). The effect of supporting electrolyte concentration on zinc electrodeposition kinetics from methimazole solutions. Electroanalysis, 31(6): 1141–1149
https://doi.org/10.1002/elan.201800852
22 O Noonan, Y Liu, X Huang, C Yu. (2018). Layered graphene/mesoporous carbon heterostructures with improved mesopore accessibility for high performance capacitive deionization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(29): 14272–14280
https://doi.org/10.1039/C8TA03114B
23 A G Pandolfo, A F Hollenkamp. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1): 11–27
https://doi.org/10.1016/j.jpowsour.2006.02.065
24 Y J Shih, C D Dong, Y H Huang, C P Huang. (2019). Electro-sorption of ammonium ion onto nickel foam supported highly microporous activated carbon prepared from agricultural residues (dried Luffa cylindrica). Science of the Total Environment, 673: 296–305
https://doi.org/10.1016/j.scitotenv.2019.04.066
25 W Tang, B L G L Zanli, J Chen. (2021). O/N/P-doped biochar induced to enhance adsorption of sulfonamide with coexisting Cu2+/Cr(VI) by air pre-oxidation. Bioresource Technology, 341: 125794
https://doi.org/10.1016/j.biortech.2021.125794
26 M Tobiszewski, M Marć, A Gałuszka, J Namieśnik. (2015). Green chemistry metrics with special reference to green analytical chemistry. Molecules (Basel, Switzerland), 20(6): 10928–10946
https://doi.org/10.3390/molecules200610928 pmid: 26076112
27 E C Vermisoglou, T Giannakopoulou, G E Romanos, N Boukos, M Giannouri, C Lei, C Lekakou, C Trapalis. (2015). Non-activated high surface area expanded graphite oxide for supercapacitors. Applied Surface Science, 358: 110–121
https://doi.org/10.1016/j.apsusc.2015.08.123
28 C Wang, H Song, Q Zhang, B Wang, A Li. (2015). Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination, 365: 407–415
https://doi.org/10.1016/j.desal.2015.03.025
29 J J Wouters, M I Tejedor-Tejedor, J J Lado, R Perez-Roa, M A Anderson. (2016). Influence of metal oxide coatings on the microstructural and electrochemical properties of different carbon materials. Journal of the Electrochemical Society, 163(13): A2733–A2744
https://doi.org/10.1149/2.0911613jes
30 B Xu, X Xu, H Gao, F He, Y Zhu, L Qian, W Han, Y Zhang, W Wei. (2020). Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization. Separation and Purification Technology, 250: 117243
https://doi.org/10.1016/j.seppur.2020.117243
31 F Yao, Q Yang, M Yan, X Li, F Chen, Y Zhong, H Yin, S Chen, J Fu, D Wang, X Li. (2020). Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. Journal of Hazardous Materials, 386: 121651
https://doi.org/10.1016/j.jhazmat.2019.121651 pmid: 31767502
32 Z Yue, T Gao, H Li. (2019). Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance. Desalination, 449: 69–77
https://doi.org/10.1016/j.desal.2018.10.018
33 H Zhang, C Wang, W Zhang, M Zhang, J Qi, J Qian, X Sun, B Yuliarto, J Na, T Park, H G A Gomaa, Y V Kaneti, J W Yi, Y Yamauchi, J Li. (2021). Nitrogen, phosphorus co-doped eave-like hierarchical porous carbon for efficient capacitive deionization. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 9(21): 12807–12817
https://doi.org/10.1039/D0TA10797B
34 L Zhang, Y Ji, G Huang, F Gao, Z Dong. (2019). Effect of borax on early hydration and rheological properties of reactivated cementitious material. Advances in Cement Research, 31(5): 235–242
https://doi.org/10.1680/jadcr.18.00051
35 X Zhu, S Yang, L Wang, Y Liu, F Qian, W Yao, S Zhang, J Chen. (2016). Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology. Environmental Pollution, 211: 20–27
https://doi.org/10.1016/j.envpol.2015.12.032 pmid: 26736052
[1] FSE-22089-OF-LJ_suppl_1 Download
[1] Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen, Xing Xie. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water[J]. Front. Environ. Sci. Eng., 2023, 17(2): 16-.
[2] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[3] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[4] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[5] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[6] Shanshan CHEN,Haiping LUO,Yanping HOU,Guangli LIU,Renduo ZHANG,Bangyu QIN. Comparison of the removal of monovalent and divalent cations in the microbial desalination cell[J]. Front. Environ. Sci. Eng., 2015, 9(2): 317-323.
[7] Zhigang LIU, Shaomin ZHU, Yansheng LI. A new regeneration approach to cation resins with aluminum salts: application of desalination by its mixed bed[J]. Front Envir Sci Eng, 2012, 6(1): 45-50.
[8] LIU Zhigang, WANG Ying, LI Yansheng, CHANG Hui. Electro-assisted regeneration of ion exchange resins[J]. Front.Environ.Sci.Eng., 2008, 2(4): 410-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed