Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (2) : 15    https://doi.org/10.1007/s11783-024-1775-8
RESEARCH ARTICLE
Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers
Yue Yang1(), Ze Fu2, Qi Zhang3
1. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
2. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
3. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
 Download: PDF(5441 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A protocol is proposed for simultaneous oil/water separation and electricity generation.

● Oil/water separation efficiency achieves > 99% only out of solar energy.

● A derived extra electricity power of ~0.1 W/m2 is obtained under solar radiation.

● The protocol offers a prospect of solar-driven water treatment and resource recovery.

Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar photothermal evaporation is a promising approach for the complete separation of two-phase mixtures using only solar energy. Herein, we report a carbonized wood-based absorber with Janus structure of comprising a hydrophobic top-layer and an oleophobic bottom-layer for simultaneous solar-driven oil-water separation and electricity generation. Under sunlight irradiation, the rapid evaporation of seawater will induce a separation of oil-water mixtures, and cause a high salt concentration region underlying the interface, while the bottom “bulk water” maintains in a low salt concentration, thus forming a salinity gradient. Electricity can be generated by salinity gradient power. Therefore, oil-water separation efficiency of > 99% and derived extra electricity power of ~0.1 W/m2 is achieved under solar radiation, demonstrating the feasibility of oil-water separation and electricity production synchronously directly using solar energy. This work provides a green and cost-effective path for the separation of oil-water mixtures.

Keywords Oily wastewater      Carbonized wood      Salinity gradient      Electricity generation      Solar irradiation     
Corresponding Author(s): Yue Yang   
Issue Date: 06 September 2023
 Cite this article:   
Yue Yang,Ze Fu,Qi Zhang. Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers[J]. Front. Environ. Sci. Eng., 2024, 18(2): 15.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1775-8
https://academic.hep.com.cn/fese/EN/Y2024/V18/I2/15
Fig.1  Schematic of simultaneous oil-water separation and electricity generation and characterization of Janus-ACB. (a) The wood channels are naturally aligned along the tree growth direction (yellow arrow); (b) Schematic of the hybrid device; Mechanism of simultaneous (c) oil-water separation and (d) electricity generation from the salinity difference under solar irradiation; Morphology characterization of the Janus-ACB: (e) Photographs of the natural basswood and the Janus-ACB; (f) SEM image of the well-organized and low tortuosity porous structure of the Janus-ACB. (g?i) Top-view SEM images showing the hierarchical channel structure of the Janus-ACB; (j) Side-view SEM image showing the hole structures on the vertical channel walls; (k) XPS spectra of the Janus-ACB; (l) The contact angles of the Janus-ACB.
Fig.2  Interfacial photothermal evaporation and oil-water separation properties of Janus-ACB. (a) UV-vis NIR spectra of natural basswood, CB and Janus-ACB; (b) Plot showing the temperature of bulk water and Janus-ACB under 1-sun irradiation with time; (c) Mass change of seawater over time and (d) thermal efficiency with corresponding evaporation rate for CB and Janus-ACB under 1-sun; (e) Measured concentrations of four primary ions in an oil-contaminated seawater sample before and after solar-driven separation; (f) Digital photographs of CB and Janus-ACB after 24 h solar irradiation; (g) Changes of oil concentration (crude oil, pump oil and soybean oil) before and after solar-driven separation; (h) Changes of different cutting fluid concentrations before and after solar-driven separation; (i) Digital photographs and microscopic images of cutting fluid emulsions before and after solar-driven separation; (j) Comparison of the oil-water separation performance for our methods and previous reports.
Fig.3  Electricity generation performance of Janus-ACB. (a) The NaCl concentration in Janus-ACB after 1 h of solar irradiation, which presents the average salt concentration underlying the Janus-ACB; (b) Voltage variations of Janus-ACB under different solar intensities; (c) Voltage variations of Janus-ACB under different salinities by 2-sun irradiation; (d) Voltage variations of individual devices and their series connections; (e) Voltage variations of Janus-ACB when light was switched on or off; (f) Maximum output power of Janus-ACB under different solar intensities.
Fig.4  Outdoor oil-water separation and electricity generation using Janus-ACB in natural sunlight. (a) Digital photographs of simultaneous oil-water separation and electricity generation under outdoor sunlight; (b) Model and (c) schematic diagram of the integrated device; (d) Solar intensity and water evaporation rate, (e) voltage change and removal rate of integrated device from 9:00 to 16:00 within a day; (f) Measured Na+ concentrations of three oil-polluted seawaters before and after solar-driven separation; (g) The concentrations of four primary cations in oil-polluted seawaters before and after solar-driven separation.
1 A L Ahmad , S Ismail , S Bhatia . (2005). Ultrafiltration behavior in the treatment of Agro-industry effluent: pilot scale studies. Chemical Engineering Science, 60(19): 5385–5394
https://doi.org/10.1016/j.ces.2005.04.021
2 N H Alias , J Jaafar , S Samitsu , T Matsuura , A F Ismail , M H D Othman , M A Rahman , N H Othman , N Abdullah , S H Paiman , N Yusof , F Aziz . (2019). Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chemical Engineering Journal, 360: 1437–1446
https://doi.org/10.1016/j.cej.2018.10.217
3 J Chen , Y Huang , N N Zhang , H Y Zou , R Y Liu , C Y Tao , X Fan , Z L Wang . (2016). Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 1(10): 16138
https://doi.org/10.1038/nenergy.2016.138
4 M L Chen , L Zhu , J W Chen , F L Yang , C Y Y Tang , M D Guiver , Y C Dong . (2020). Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 169: 115180
https://doi.org/10.1016/j.watres.2019.115180
5 X J Chen , Y Q Liu , G Huang , C J An , R F Feng , Y Yao , W Huang , S Q Weng . (2022). Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation. Frontiers of Environmental Science & Engineering, 16(12): 153
https://doi.org/10.1007/s11783-022-1588-6
6 X Q Cheng , Z K Sun , X B Yang , Z X Li , Y J Zhang , P Wang , H Liang , J Ma , L Shao . (2020). Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(33): 16933–16942
https://doi.org/10.1039/D0TA03011B
7 M Cheryan , N Rajagopalan . (1998). Membrane processing of oily streams. wastewater treatment and waste reduction. Journal of Membrane Science, 151(1): 13–28
https://doi.org/10.1016/S0376-7388(98)00190-2
8 Z L ChuY J FengS Seeger (2015). Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 54(8): 2328–2338 10.1002/anie.201405785
9 Y H Dou , D L Tian , Z Q Sun , Q N Liu , N Zhang , J H Kim , L S Jiang , X Dou . (2017). Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano, 11(3): 2477–2485
https://doi.org/10.1021/acsnano.6b07918
10 E El Bestawy , B F El-Shatby , A S Eltaweil . (2020). Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World Journal of Microbiology & Biotechnology, 36(9): 141
https://doi.org/10.1007/s11274-020-02915-1
11 T Gao , Y D Wang , X Wu , P Wu , X F Yang , Q Li , Z Z Zhang , D K Zhang , G Owens , H L Xu . (2022). More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 67(15): 1572–1580
https://doi.org/10.1016/j.scib.2022.07.004
12 T Gao , X Wu , Y D Wang , G Owens , H L Xu . (2021). A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Solar RRL, 5(5): 2100053
https://doi.org/10.1002/solr.202100053
13 H Ghasemi , G Ni , A M Marconnet , J Loomis , S Yerci , N Miljkovic , G Chen . (2014). Solar steam generation by heat localization. Nature Communications, 5(1): 4449
https://doi.org/10.1038/ncomms5449
14 Y F Gu , X J Mu , P F Wang , X Y Wang , J Liu , J Q Shi , A Y Wei , Y Z Tian , G S Zhu , H R Xu . et al.. (2020). Integrated photothermal aerogels with ultrahigh-performance solar steam generation. Nano Energy, 74: 104857
https://doi.org/10.1016/j.nanoen.2020.104857
15 Y H Guo , X Zhao , F Zhao , Z H Jiao , X Y Zhou , G H Yu . (2020). Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy & Environmental Science, 13(7): 2087–2095
https://doi.org/10.1039/D0EE00399A
16 J W Hou , C Ji , G X Dong , B W Xiao , Y Ye , V Chen . (2015). Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(33): 17032–17041
https://doi.org/10.1039/C5TA01756D
17 L Hu , S J Gao , X G Ding , D Wang , J Jiang , J Jin , L Jiang . (2015a). Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano, 9(5): 4835–4842
https://doi.org/10.1021/nn5062854
18 X B Hu , Y Yu , J E Zhou , Y Q Wang , J Liang , X Z Zhang , Q B Chang , L X Song . (2015b). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476: 200–204
https://doi.org/10.1016/j.memsci.2014.11.043
19 B Jafari , M Abbasi , S A Hashemifard , M Sillanpaa . (2020). Elaboration and characterization of novel two-layer tubular ceramic membranes by coating natural zeolite and activated carbon on mullite-alumina-zeolite support: application for oily wastewater treatment. Journal of Asian Ceramic Societies, 8(3): 848–861
https://doi.org/10.1080/21870764.2020.1793475
20 Y D Kuang , C J Chen , S M He , E M Hitz , Y L Wang , W T Gan , R Y Mi , L B Hu . (2019). A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 31(23): 1900498
https://doi.org/10.1002/adma.201900498
21 E B Kujawinski , M C Kido Soule , D L Valentine , A K Boysen , K Longnecker , M C Redmond . (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45(4): 1298–1306
https://doi.org/10.1021/es103838p
22 X Q Li , X Z Min , J L Li , N Xu , P C Zhu , B Zhu , S N Zhu , J Zhu . (2018). Storage and recycling of interfacial solar steam enthalpy. Joule, 2(11): 2477–2484
https://doi.org/10.1016/j.joule.2018.08.008
23 Y Liu , J W Lou , M T Ni , C Y Song , J B Wu , N P Dasgupta , P Tao , W Shang , T Deng . (2016). Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 8(1): 772–779
https://doi.org/10.1021/acsami.5b09996
24 N M Mostefa , M Tir . (2004). Coupling flocculation with electroflotation for waste oil/water emulsion treatment: optimization of the operating conditions. Desalination, 161(2): 115–121
https://doi.org/10.1016/S0011-9164(04)90047-1
25 O Neumann , C Feronti , A D Neumann , A J Dong , K Schell , B Lu , E Kim , M Quinn , S Thompson , N Grady . et al.. (2013a). Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 110(29): 11677–11681
https://doi.org/10.1073/pnas.1310131110
26 O Neumann , A D Neumann , E Silva , C Ayala-Orozco , S Tian , P Nordlander , N J Halas . (2015). Nanoparticle-mediated, light-induced phase separations. Nano Letters, 15(12): 7880–7885
https://doi.org/10.1021/acs.nanolett.5b02804
27 O Neumann , A S Urban , J Day , S Lal , P Nordlander , N J Halas . (2013b). Solar vapor generation enabled by nanoparticles. ACS Nano, 7(1): 42–49
https://doi.org/10.1021/nn304948h
28 G RíosC PazosJ Coca (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 138(2–3): 383–389
29 O Scialdone , A D’Angelo , Lume E De , A Galia . (2014). Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients. Electrochimica Acta, 137: 258–265
https://doi.org/10.1016/j.electacta.2014.06.007
30 Y A Shirazi , E W Carr , G R Parsons , P Hoagland , D K Ralston , J Chen . (2019). Increased operational costs of electricity generation in the delaware river and estuary from salinity increases due to sea-level rise and a deepened channel. Journal of Environmental Management, 244: 228–234
https://doi.org/10.1016/j.jenvman.2019.04.056
31 X Y Wang , X Q Li , G L Liu , J L Li , X Z Hu , N Xu , W Zhao , B Zhu , J Zhu . (2019). An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angewandte Chemie International Edition, 58(35): 12054–12058
https://doi.org/10.1002/anie.201905229
32 Z J Wang , Y Wang , G J Liu . (2016). Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angewandte Chemie International Edition, 55(4): 1291–1294
https://doi.org/10.1002/anie.201507451
33 Z X Wang , M C Han , F He , S Q Peng , S B Darling , Y X Li . (2020). Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 74: 104886
https://doi.org/10.1016/j.nanoen.2020.104886
34 Z C Wu , C Zhang , K M Peng , Q Y Wang , Z W Wang . (2018). Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Frontiers of Environmental Science & Engineering, 12(3): 15
https://doi.org/10.1007/s11783-018-1042-y
35 N Xu , J L Li , Y Wang , C Fang , X Q Li , Y X Wang , L Zhou , B Zhu , Z Wu , S N Zhu , J Zhu . (2019). A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 5(7): eaaw7013
https://doi.org/10.1126/sciadv.aaw7013
36 H C Yang , J Hou , V Chen , Z K Xu . (2016). Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 55(43): 13398–13407
https://doi.org/10.1002/anie.201601589
37 P H Yang , K Liu , Q Chen , J Li , J J Duan , G B Xue , Z S Xu , W K Xie , J Zhou . (2017). Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 10(9): 1923–1927
https://doi.org/10.1039/C7EE01804E
38 G Yi , S Chen , X Quan , G L Wei , X F Fan , H T Yu . (2018). Enhanced separation performance of carbon nanotube-polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197: 107–115
https://doi.org/10.1016/j.seppur.2017.12.058
39 G Yi , X F Fan , X Quan , S Chen , H T Yu . (2019). Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater. Frontiers of Environmental Science & Engineering, 13(2): 23
https://doi.org/10.1007/s11783-019-1103-x
40 H M Yu , D Y Wang , H Y Jin , P Wu , X Wu , D W Chu , Y Lu , X F Yang , H L Xu . (2023). 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Advanced Functional Materials, 33(24): 2214828
https://doi.org/10.1002/adfm.202214828
41 L F Zhang , G K Fu , Z Zhang . (2019). Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresource Technology, 272: 105–113
https://doi.org/10.1016/j.biortech.2018.10.012
42 Z Zhang , X Y Kong , K Xiao , G H Xie , Q Liu , Y Tian , H C Zhang , J Ma , L P Wen , L Jiang . (2016). A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Advanced Materials, 28(1): 144–150
https://doi.org/10.1002/adma.201503668
43 F Zhao , X Y Zhou , Y Shi , X Qian , M Alexander , X P Zhao , S Mendez , R G Yang , L T Qu , G H Yu . (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 13(6): 489–495
https://doi.org/10.1038/s41565-018-0097-z
44 J Y Zhao , X Wu , H M Yu , Y D Wang , P Wu , X F Yang , D W Chu , G Owens , H L Xu . (2023). Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat, 5(3): e12302
https://doi.org/10.1002/eom2.12302
45 S S Zhao , Z Tao , L W Chen , M Q Han , B Zhao , X L Tian , L Wang , F G Meng . (2021). An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering, 15(4): 63
https://doi.org/10.1007/s11783-020-1355-5
[1] FSE-23075-OF-YY_suppl_1 Download
[1] Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen, Xing Xie. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water[J]. Front. Environ. Sci. Eng., 2023, 17(2): 16-.
[2] Yujun Zhou, Qinghua Ji, Chengzhi Hu, Huijuan Liu, Jiuhui Qu. A hybrid fuel cell for water purification and simultaneously electricity generation[J]. Front. Environ. Sci. Eng., 2023, 17(1): 11-.
[3] Gang Yi, Xinfei Fan, Xie Quan, Shuo Chen, Hongtao Yu. Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(2): 23-.
[4] Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Front Envir Sci Eng, 2012, 6(4): 569-574.
[5] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed