Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (2) : 26    https://doi.org/10.1007/s11783-024-1786-5
PERSPECTIVES
New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management
Zhiqiang Zuo1,2, Min Zheng2,3(), Tao Liu2,4, Yongzhen Peng1, Zhiguo Yuan5()
1. National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
2. Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
3. Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
4. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
5. School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
 Download: PDF(2180 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The historical development of free nitrous acid (FNA) technologies is reviewed.

● The roles of novel acid-tolerant ammonia oxidizers are highlighted.

● Acid-tolerant ammonia oxidizers can self-sustain high-level FNA production.

● The next-generation in situ FNA-based technologies are discussed.

The biocidal effects of free nitrous acid (FNA) have found applications in multiple units in an urban wastewater system, including sewer networks, wastewater treatment processes, and sludge treatment processes. However, these applications are associated with chemical costs as both nitrite and acid are needed to produce FNA at the required levels. The recent discovery of novel acid-tolerant ammonia oxidizers offers the possibility to produce FNA from domestic wastewater, enabling the development of next-generation FNA-based technologies capable of achieving self-sustaining FNA production. In this study, we focus on the concept of in situ FNA generation facilitated by acid-tolerant ammonia oxidizers and highlight the multiple benefits it creates, after a brief review of the historical development of FNA-based technologies. We will discuss how wastewater systems can be made more energy-efficient and sustainable by leveraging the potential of acid-tolerant ammonia oxidizers.

Keywords Free nitrous acid      Acid-tolerant ammonia oxidizer      In situ generation      Wastewater management     
Corresponding Author(s): Min Zheng,Zhiguo Yuan   
Issue Date: 11 December 2023
 Cite this article:   
Zhiqiang Zuo,Min Zheng,Tao Liu, et al. New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management[J]. Front. Environ. Sci. Eng., 2024, 18(2): 26.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1786-5
https://academic.hep.com.cn/fese/EN/Y2024/V18/I2/26
Fig.1  Progress of the FNA research in the past 20 years.
Fig.2  Potential applications of FNA produced in situ by acid-tolerant AOB to sewage and sludge treatment.
Fig.3  Wider applications of FNA produced in situ for sustainable wastewater management.
1 N H Ab Hamid , L Ye , D K Wang , S Smart , E Filloux , T Lebouteiller , X Zhang . (2018). Evaluating the membrane fouling formation and chemical cleaning strategy in forward osmosis membrane filtration treating domestic sewage. Environmental Science: Water Research & Technology, 4(12): 2092–2103
https://doi.org/10.1039/C8EW00584B
2 A W Abbew , A A Amadu , S Qiu , P Champagne , I Adebayo , P O Anifowose , S Ge . (2022). Understanding the influence of free nitrous acid on microalgal-bacterial consortium in wastewater treatment: a critical review. Bioresource Technology, 363: 127916
https://doi.org/10.1016/j.biortech.2022.127916
3 A C Anthonisen , R C Loehr , T B S Prakasam , E G Srinath . (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal–Water Pollution Control Federation, 48(5): 835–852
4 X Bai , F Ghasemi Naghdi , L Ye , P Lant , S Pratt . (2014). Enhanced lipid extraction from algae using free nitrous acid pretreatment. Bioresource Technology, 159: 36–40
https://doi.org/10.1016/j.biortech.2014.01.133
5 A G Calderon , H Duan , J Meng , J Zhao , Y Song , W Yu , Z Hu , K Xu , X Cheng , S Hu . et al.. (2021). An integrated strategy to enhance performance of anaerobic digestion of waste activated sludge. Water Research, 195: 116977
https://doi.org/10.1016/j.watres.2021.116977
6 Z Cheng , Z Zuo , S Yang , Z Yuan , X Huang , Y Liu . (2021). Study of free nitrous acid (FNA)-based elimination of sulfamethoxazole: kinetics, transformation pathways, and toxicity assessment. Water Research, 189: 116629
https://doi.org/10.1016/j.watres.2020.116629
7 M Chislett , J Guo , P L Bond , Y Wang , B C Donose , Z Yuan . (2022b). Reactive nitrogen species from free nitrous acid (FNA) cause cell lysis. Water Research, 217: 118401
https://doi.org/10.1016/j.watres.2022.118401
8 M Chislett , Z Yu , B C Donose , J Guo , Z Yuan . (2022a). Understanding the effect of free nitrous acid on biofilms. Environmental Science & Technology, 56(16): 11625–11634
https://doi.org/10.1021/acs.est.2c01156
9 K Czuba , K Pacyna-Iwanicka , A Bastrzyk , M Kabsch-Korbutowicz , A Dawiec-Liśniewska , P Chrobot , A Shavandi , D Podstawczyk . (2022). Towards the circular economy—Sustainable fouling mitigation strategies in ultrafiltration of secondary effluent. Desalination, 532: 115731
https://doi.org/10.1016/j.desal.2022.115731
10 H Duan , S Gao , X Li , Hamid N H Ab , G Jiang , M Zheng , X Bai , P L Bond , X Lu , M M Chislett . et al.. (2020). Improving wastewater management using free nitrous acid (FNA). Water Research, 171: 115382
https://doi.org/10.1016/j.watres.2019.115382
11 E Filloux , J Wang , M Pidou , W Gernjak , Z Yuan . (2015). Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 495: 276–283
https://doi.org/10.1016/j.memsci.2015.08.034
12 A Fumasoli , H Bürgmann , D G Weissbrodt , G F Wells , K Beck , J Mohn , E Morgenroth , K M Udert . (2017). Growth of Nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content. Environmental Science & Technology, 51(12): 6857–6866
https://doi.org/10.1021/acs.est.7b00392
13 A Fumasoli , B Etter , B Sterkele , E Morgenroth , K M Udert . (2016). Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 73(1): 215–222
https://doi.org/10.2166/wst.2015.485
14 A Fumasoli , E Morgenroth , K M Udert . (2015). Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. Water Research, 83: 161–170
https://doi.org/10.1016/j.watres.2015.06.013
15 M Hayatsu , K Tago , I Uchiyama , A Toyoda , Y Wang , Y Shimomura , T Okubo , F Kurisu , Y Hirono , K Nonaka . et al.. (2017). An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME Journal, 11(5): 1130–1141
https://doi.org/10.1038/ismej.2016.191
16 C Hellinga , M C M Van Loosdrecht , J J Heijnen . (1999). Model based design of a novel process for nitrogen removal from concentrated flows. Mathematical and Computer Modelling of Dynamical Systems, 5(4): 351–371
https://doi.org/10.1076/mcmd.5.4.351.3678
17 Z Hu , T Liu , Z Wang , J Meng , M Zheng . (2023). Toward energy neutrality: novel wastewater treatment incorporating acidophilic ammonia oxidation. Environmental Science & Technology, 57(11): 4522–4532
https://doi.org/10.1021/acs.est.2c06444
18 G Jiang , O Gutierrez , Z Yuan . (2011). The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms. Water Research, 45(12): 3735–3743
https://doi.org/10.1016/j.watres.2011.04.026
19 G Jiang , A Keating , S Corrie , K O’Halloran , L Nguyen , Z Yuan . (2013). Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia. Water Research, 47(13): 4331–4339
https://doi.org/10.1016/j.watres.2013.05.024
20 Y Law , L Ye , Q Wang , S Hu , M Pijuan , Z Yuan . (2015). Producing free nitrous acid–A green and renewable biocidal agent—From anaerobic digester liquor. Chemical Engineering Journal, 259: 62–69
https://doi.org/10.1016/j.cej.2014.07.138
21 J Li , Z S Hua , T Liu , C Wang , J Li , G Bai , S Lücker , M S Jetten , M Zheng , J Guo . (2021). Selective enrichment and metagenomic analysis of three novel comammox Nitrospira in a urine-fed membrane bioreactor. ISME Communications, 1(1): 7
https://doi.org/10.1038/s43705-021-00005-3
22 J Li , K Xu , T Liu , G Bai , Y Liu , C Wang , M Zheng . (2020). Achieving stable partial nitritation in an acidic nitrifying bioreactor. Environmental Science & Technology, 54(1): 456–463
https://doi.org/10.1021/acs.est.9b04400
23 R Valladares Linares, V Yangali-Quintanilla, Z Li, G Amy (2012). NOM and TEP fouling of a forward osmosis (FO) membrane: foulant identification and cleaning. Journal of Membrane Science, 421–422: 217–224
https://doi.org/10.1016/j.memsci.2012.07.019
24 T Liu , S Hu , J Guo . (2019). Enhancing mainstream nitrogen removal by employing nitrate/nitrite-dependent anaerobic methane oxidation processes. Critical Reviews in Biotechnology, 39(5): 732–745
https://doi.org/10.1080/07388551.2019.1598333
25 W Liu , J Li , X Li , Y Tian , J Meng , M Zheng , Z Yuan . (2022). Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Journal of Hazardous Materials, 438: 129535
https://doi.org/10.1016/j.jhazmat.2022.129535
26 Y Lu , T Liu , C Niu , H Duan , M Zheng , S Hu , Z Yuan , H Wang , J Guo . (2023a). Challenges of suppressing nitrite-oxidizing bacteria in membrane aerated biofilm reactors by low dissolved oxygen control. Water Research, 247: 120754
https://doi.org/10.1016/j.watres.2023.120754
27 X Lu , Z Wang , H Duan , Z Wu , S Hu , L Ye , Z Yuan , M Zheng . (2023b). Significant production of nitric oxide by aerobic nitrite reduction at acidic pH. Water Research, 230: 119542
https://doi.org/10.1016/j.watres.2022.119542
28 J Meng , Z Hu , Z Wang , S Hu , Y Liu , H Guo , J Li , Z Yuan , M Zheng . (2022). Determining factors for nitrite accumulation in an acidic nitrifying system: influent ammonium concentration, operational pH, and ammonia-oxidizing community. Environmental Science & Technology, 56(16): 11578–11588
https://doi.org/10.1021/acs.est.1c07522
29 S Murthy , M Higgins , Y C Chen , C Peot , W Toffey . (2006). High-solids centrifuge is a boon and a curse for managing anaerobically digested biosolids. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 53(3): 245–253
https://doi.org/10.2166/wst.2006.103
30 M Pijuan , Q Wang , L Ye , Z Yuan . (2012). Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresource Technology, 116: 92–98
https://doi.org/10.1016/j.biortech.2012.04.016
31 J B Rake , R G Eagon . (1980). Inhibition, but not uncoupling, of respiratory energy coupling of three bacterial species by nitrite. Journal of Bacteriology, 144(3): 975–982
https://doi.org/10.1128/jb.144.3.975-982.1980
32 T Saito , D Brdjanovic , M C M van Loosdrecht . (2004). Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research, 38(17): 3760–3768
https://doi.org/10.1016/j.watres.2004.05.023
33 M Strous , J G Kuenen , M S Jetten . (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7): 3248–3250
https://doi.org/10.1128/AEM.65.7.3248-3250.1999
34 Z Su , T Liu , J Guo , M Zheng . (2023). Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges. Environmental Science & Technology, 57(34): 12557–12570
https://doi.org/10.1021/acs.est.3c00636
35 K M Udert , T A Larsen , W Gujer . (2005). Chemical nitrite oxidation in acid solutions as a consequence of microbial ammonium oxidation. Environmental Science & Technology, 39(11): 4066–4075
https://doi.org/10.1021/es048422m
36 C Wald . (2022). The urine revolution: how recycling pee could help to save the world. Nature, 602(7896): 202–206
https://doi.org/10.1038/d41586-022-00338-6
37 Q Wang , L Ye , G Jiang , S Hu , Z Yuan . (2014). Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Research, 55: 245–255
https://doi.org/10.1016/j.watres.2014.02.029
38 Q Wang , L Ye , G Jiang , P D Jensen , D J Batstone , Z Yuan . (2013b). Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge. Environmental Science & Technology, 47(20): 11897–11904
https://doi.org/10.1021/es402933b
39 Q Wang , L Ye , G Jiang , Z Yuan . (2013a). A free nitrous acid (FNA)-based technology for reducing sludge production. Water Research, 47(11): 3663–3672
https://doi.org/10.1016/j.watres.2013.04.016
40 Z Wang , G Ni , N Maulani , J Xia , H De Clippeleir , S Hu , Z Yuan , M Zheng . (2021b). Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer ‘Candidatus nitrosoglobus’. Water Research, 196: 117026
https://doi.org/10.1016/j.watres.2021.117026
41 Z Wang , G Ni , J Xia , Y Song , S Hu , Z Yuan , M Zheng . (2021a). Bioleaching of toxic metals from anaerobically digested sludge without external chemical addition. Water Research, 200: 117211
https://doi.org/10.1016/j.watres.2021.117211
42 Z Wang , M Zheng , H Duan , S Hu , Z Yuan . (2022b). Re-configuring mainstream anammox. Chemical Engineering Journal, 445: 136817
https://doi.org/10.1016/j.cej.2022.136817
43 Z Wang , M Zheng , H Duan , G Ni , W Yu , Y Liu , Z Yuan , S Hu . (2021e). Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Water Research, 194: 116962
https://doi.org/10.1016/j.watres.2021.116962
44 Z Wang , M Zheng , H Duan , Z Yuan , S Hu . (2022a). A 20-year journey of partial nitritation and anammox (PN/A): from sidestream toward mainstream. Environmental Science & Technology, 56(12): 7522–7531
https://doi.org/10.1021/acs.est.1c06107
45 Z Wang , M Zheng , Z Hu , H Duan , H De Clippeleir , A Al-Omari , S Hu , Z Yuan . (2021d). Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: mechanisms and counter-strategies. Water Research, 200: 117239
https://doi.org/10.1016/j.watres.2021.117239
46 Z Wang , M Zheng , J Meng , Z Hu , G Ni , Calderon A Guerrero , H Li , Clippeleir H De , A Al-Omari , S Hu . et al.. (2021c). Robust nitritation sustained by acid-tolerant ammonia-oxidizing bacteria. Environmental Science & Technology, 55(3): 2048–2056
https://doi.org/10.1021/acs.est.0c05181
47 W Wei , Q Wang , L Zhang , A Laloo , H Duan , D J Batstone , Z Yuan . (2018). Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion. Water Research, 130: 13–19
https://doi.org/10.1016/j.watres.2017.11.050
48 S Zahedi , P Icaran , Z Yuan , M Pijuan . (2016). Assessment of free nitrous acid pre-treatment on a mixture of primary sludge and waste activated sludge: effect of exposure time and concentration. Bioresource Technology, 216: 870–875
https://doi.org/10.1016/j.biortech.2016.06.038
49 T Zhang , Q Wang , L Ye , Z Yuan . (2016). Effect of free nitrous acid pre-treatment on primary sludge biodegradability and its implications. Chemical Engineering Journal, 290: 31–36
https://doi.org/10.1016/j.cej.2016.01.028
50 M Zheng , H Li , H Duan , T Liu , Z Wang , J Zhao , Z Hu , S Watts , J Meng , P Liu . et al.. (2023). One-year stable pilot-scale operation demonstrates high flexibility of mainstream anammox application. Water Research X, 19: 100166
https://doi.org/10.1016/j.wroa.2023.100166
51 M Zheng , S Wu , Z Zuo , Z Wang , Y Qiu , Y Liu , X Huang , Z Yuan . (2018). Predictions of the influent and operational conditions for partial nitritation with a model incorporating pH dynamics. Environmental Science & Technology, 52(11): 6457–6465
https://doi.org/10.1021/acs.est.8b00202
52 M Zheng , Z Zuo , Y Zhang , Y Cui , Q Dong , Y Liu , X Huang , Z Yuan . (2017). Nitrite production from urine for sulfide control in sewers. Water Research, 122: 447–454
https://doi.org/10.1016/j.watres.2017.05.048
53 Y Zhou , A Oehmen , M Lim , V Vadivelu , W J Ng . (2011). The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Research, 45(15): 4672–4682
https://doi.org/10.1016/j.watres.2011.06.025
54 Z Zuo , Y Chen , Y Xing , S Li , S Yang , G Jiang , T Liu , M Zheng , X Huang , Y Liu . (2023). The advantage of a two-stage nitrification method for fertilizer recovery from human urine. Water Research, 235: 119932
https://doi.org/10.1016/j.watres.2023.119932
55 Z Zuo , T Liu , M Zheng , Y Xing , D Ren , H Li , S Yang , Y Liu , Z Yuan , X Huang . (2023b). Recovery of ammonium nitrate solution from urine wastewater via novel free nitrous acid (FNA)-mediated two-stage processes. Chemical Engineering Journal, 440: 135826
https://doi.org/10.1016/j.cej.2022.135826
56 Zuo Z, Xing Y, Duan H, Ren D, Zheng M, Liu Y, Huang X (2023a). Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing. Water Research, 234: 119820
57 Z Zuo , M Zheng , J Chang , D Ren , X Huang , Z Yuan , Y Liu . (2020). Free nitrous acid-based suppression of sulfide production in sewer sediments: in-situ effect mechanism. The Science of the Total Environment, 715: 136871
https://doi.org/10.1016/j.scitotenv.2020.136871
[1] Jiaojiao Xu, Xiaotian Chen, Rui Tang, Jingwei Feng, Shoujun Yuan, Wei Wang, Zhen-Hu Hu. Removal of pathogenic indicator microorganisms during partial nitrification: the role of free nitrous acid[J]. Front. Environ. Sci. Eng., 2024, 18(3): 33-.
[2] Gang GUO, Yayi WANG, Chong WANG, Hong WANG, Mianli PAN, Shaowei CHEN. Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate- accumulating organisms linked to phosphorus removal and N2O production[J]. Front Envir Sci Eng, 2013, 7(4): 616-624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed