Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (7) : 91    https://doi.org/10.1007/s11783-024-1851-0
Broadening environmental research in the era of accurate protein structure determination and predictions
Mingda Zhou1, Tong Wang1, Ke Xu2, Han Wang1, Zibin Li1, Wei-xian Zhang1, Yayi Wang1()
1. State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
 Download: PDF(3376 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The connections between protein structure and environmental research are proposed.

● Cryogenic electron microscopy facilitates studies of environmental protein dynamics.

● Protein structure predictions help understand unknown proteins in the environment.

● Environmental applications aided by protein structural research are anticipated.

The deep-learning protein structure prediction method AlphaFold2 has garnered enormous attention beyond the realm of structural biology, for its groundbreaking contribution to solving the “protein folding problem”. In this perspective, we explore the connection between protein structure studies and environmental research, delving into the potential for addressing specific environmental challenges. Proteins are promising for environmental applications because of the functional diversity endowed by their structural complexity. However, structural studies on proteins with environmental significance remain scarce. Here, we present the opportunity to study proteins by advancing experimental determination and deep-learning prediction methods. Specifically, the latest progress in environmental research via cryogenic electron microscopy is highlighted. It allows us to determine the structure of protein complexes in their native state within cells at molecular resolution, revealing environmentally-associated structural dynamics. With the remarkable advancements in computational power and experimental resolution, the study of protein structure and dynamics has reached unprecedented depth and accuracy. These advancements will undoubtedly accelerate the establishment of comprehensive environmental protein structural and functional databases. Tremendous opportunities for protein engineering exist to enable innovative solutions for environmental applications, such as the degradation of persistent contaminants, and the recovery of valuable metals as well as rare earth elements.

Keywords Environmental proteins      Protein structure      Cryogenic electron microscopy      Protein structure prediction      Protein engineering      Artificial Intelligence     
Corresponding Author(s): Yayi Wang   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 22 April 2024
 Cite this article:   
Mingda Zhou,Tong Wang,Ke Xu, et al. Broadening environmental research in the era of accurate protein structure determination and predictions[J]. Front. Environ. Sci. Eng., 2024, 18(7): 91.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1851-0
https://academic.hep.com.cn/fese/EN/Y2024/V18/I7/91
Fig.1  (a) Number of released Protein Data Bank (PDB) structures, classified by methods over the past 30 years. NMR, nuclear magnetic resonance spectroscopy; cryo-EM, cryogenic electron microscopy. (b) Percentage of resolution ranges in electron microscopy density maps between 2002 and 2023, from the Electron Microscopy Data Bank. Each color denotes a different resolution range of deposited structures. (c) Global distance test-total score (GDT-TS) trend line of the past 14 CASP ranges from easy to difficult. GDT-TS is the main accuracy metric for predictions. Bubble points denote the AlphaFold2 performance for each prediction project. (d) Structure of the ubiquinol oxidase subunit 1 (color) from Escherichia coli, determined by experiment (left) (image from the RCSB PDB of PDB ID 6WTI) (Su et al., 2021) and AlphaFold2 prediction (right).
Fig.2  (a) Typical workflow for single-particle analysis (SPA). (b) The difference in imaging methods between SPA and cryo-electron tomography.
Protein complexClassificationFunctionOrganismsExpression systemMW (kDa)Reconstruction MethodResolution (?)Ref.
Methane monooxygenaseOxidoreductaseCatalyze methane into methanolMethylococcus capsulatusn.a.314.77Single Particle2.6Chang et al. (2021)
Fdh-hdr-fmd hexamerOxidoreductaseCatalyze methanogenic electron-bifurcating and CO2 fixingMethanospirillum hungatein.a.~3000Single Particle3.5Watanabe et al. (2021)
F420-reducing nife-hydrogenaseOxidoreductaseOxidation/reduction of F420 in the methanogenesis pathwayMethanothermobacter marburgensisn.a.109.14Single Particle4.0Mills et al. (2013)
Succinate dehydrogenaseOxidoreductaseCatalyze succinate oxidation by menaquinoneMycolicibacterium smegmatisn.a.423.47Single Particle2.84Gong et al. (2020)
ketol-acid reductoisomeraseIsomeraseCatalyze the isomerism of ketol-acidSaccharolobus solfataricusEscherichia coli447.05Single Particle3.0Chen et al. (2019)
CYP102A1OxidoreductaseCatalyze hydroxylating long-chain fatty acidsBacillus megateriumEscherichia coli238Single Particle6.7Su et al. (2020)
N,N-dimethylformamidaseHydrolaseCatalyze the formation of formate and dimethylamineParacoccus sp. SSG05Escherichia coli204.96Single Particle3.0Arya et al. (2020)
Formate dehydrogenaseOxidoreductaseCatalyze the reversible oxidation of formate to carbon dioxideRhodobacter capsulatusn.a.369.03Single Particle3.26Radon et al. (2020)
Hydrazine dehydrogenaseOxidoreductaseCatalyze hydrazine oxidationCandidatus Kuenenia stuttgartiensisn.a.~1700Single Particle5.2Akram et al. (2019)
Nitrite oxidoreductaseOxidoreductaseCatalyze nitrite oxidation and reductionCandidatus Kuenenia stuttgartiensisn.a.230.0/nmTomograph/Helical22.0/6.2Chicano et al. (2021)
Nitrite reductaseOxidoreductaseCatalyze the nitrite into nitric oxideAchromobacter cycloclastesn.a.110.25Single Particle2.99Adachi et al. (2021)
Nitric oxide reductaseOxidoreductaseCatalyze nitric oxide into nitrous oxideAchromobacter xylosoxidansEscherichia coli171.85Single Particle3.3Gopalasingam et al. (2019)
Sulfur oxygenase reductaseOxidoreductaseCatalyze oxygenation and disproportionation of sulfurSulfurisphaera tokodaiiEscherichia coli859.66Single Particle2.24Sato et al., 2020)
Cytochrome s filamentProtein fibrilNanowires for electron transportGeobacter sulfurreducensn.a.46.72Helical3.4Filman et al. (2019)
Ybtpq importerTransport proteinAssociated and retake the siderophoresEscherichia colin.a.133.35Single Particle3.4Wang et al. (2020)
Trkh-trkaTransport proteinIon channel implicated in K+ uptakeVibrio parahemolyticusEscherichia coli413.39Single Particle2.97Zhang et al. (2020)
Tab.1  Advances in protein structures in environmental microorganisms via cryogenic electron microscopy
Fig.3  (a) Cryo-electron microscopy (cryo-EM) reconstruction of the CYP102A1 structure in the closed state (7.6 ?) (EMD-20785) and open state (8.3 ?) (EMD-20786) (Su et al., 2020). (b) Cryo-EM reconstruction of Cu-containing nitrite reductase structures at pH = 6.2 (2.99 ?) (EMD-0730) and pH = 8.1 (2.85 ?) (EMD-0731) (Adachi et al., 2021). (c) Structures of ketol-acid reductoisomerase over the temperature range 25–70 °C, overlaid with the 4 °C structure, showing the major change in the N-subdomain between 55 and 70 °C (Chen et al., 2019). (d) In situ nitrite oxidoreductase (NXR) complex anammoxosomal tubules via the tomogram of a K. stuttgartiensis cell (upper left) and the 22 ? resolution reconstruction of anammoxosomal tubules (upper right) (Chicano et al., 2021). NXR-A, -B, and -C subunit crystal structures (3.0 ?) (lower left).
1 E Abola , P Kuhn , T Earnest , R C Stevens . (2000). Automation of X-ray crystallography. Nature Structural Biology, 7(11): 973–977
https://doi.org/10.1038/80754
2 N Adachi , T Yamaguchi , T Moriya , M Kawasaki , K Koiwai , A Shinoda , Y Yamada , F Yumoto , T Kohzuma , T Senda . (2021). 2.85 and 2.99 A resolution structures of 110 kDa nitrite reductase determined by 200 kV cryogenic electron microscopy. Journal of Structural Biology, 213(3): 107768
https://doi.org/10.1016/j.jsb.2021.107768
3 R Aebersold , M Mann . (2016). Mass-spectrometric exploration of proteome structure and function. Nature, 537(7620): 347–355
https://doi.org/10.1038/nature19949
4 M Akram , A Dietl , U Mersdorf , S Prinz , W Maalcke , J Keltjens , C Ferousi , N M De Almeida , J Reimann , B Kartal , M S M Jetten , K Parey , T R M Barends . (2019). A 192-heme electron transfer network in the hydrazine dehydrogenase complex. Science Advances, 5(4): eaav4310
https://doi.org/10.1126/sciadv.aav4310
5 C B Anfinsen . (1973). Principles that govern the folding of protein chains. Science, 181(4096): 223–230
https://doi.org/10.1126/science.181.4096.223
6 C K Arya , S Yadav , J Fine , A Casanal , G Chopra , G Ramanathan , K R Vinothkumar , R Subramanian . (2020). A 2-Tyr-1-carboxylate mononuclear iron center forms the active site of a paracoccus dimethylformamidase. Angewandte Chemie International Edition, 59(39): 16961–16966
https://doi.org/10.1002/anie.202005332
7 M Baek , F Dimaio , I Anishchenko , J Dauparas , S Ovchinnikov , G R Lee , J Wang , Q Cong , L N Kinch , R D Schaeffer . et al.. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557): 871–876
https://doi.org/10.1126/science.abj8754
8 X C Bai , G Mcmullan , S H W Scheres . (2015). How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 40(1): 49–57
https://doi.org/10.1016/j.tibs.2014.10.005
9 U T Bornscheuer , G W Huisman , R J Kazlauskas , S Lutz , J C Moore , K Robins . (2012). Engineering the third wave of biocatalysis. Nature, 485(7397): 185–194
https://doi.org/10.1038/nature11117
10 P Bryant , G Pozzati , A Elofsson . (2022). Improved prediction of protein-protein interactions using AlphaFold2. Nature Communications, 13(1): 1265
https://doi.org/10.1038/s41467-022-28865-w
11 E Callaway . (2022). The entire protein universe’: AI predicts shape of nearly every known protein. Nature, 608(7921): 15–16
https://doi.org/10.1038/d41586-022-02083-2
12 W H Chang , H H Lin , I K Tsai , S H Huang , S C Chung , I P Tu , S S F Yu , S I Chan . (2021). Copper centers in the cryo-EM structure of particulate methane monooxygenase reveal the catalytic machinery of methane oxidation. Journal of the American Chemical Society, 143(26): 9922–9932
https://doi.org/10.1021/jacs.1c04082
13 C Y Chen , Y C Chang , B L Lin , C H Huang , M D Tsai . (2019). Temperature-resolved cryo-EM uncovers structural bases of temperature-dependent enzyme functions. Journal of the American Chemical Society, 141(51): 19983–19987
https://doi.org/10.1021/jacs.9b10687
14 K Chen , F H Arnold . (2020). Engineering new catalytic activities in enzymes. Nature Catalysis, 3(3): 203–213
https://doi.org/10.1038/s41929-019-0385-5
15 Y Cheng (2018). Single-particle cryo-EM—How did it get here and where will it go? Science, 361(6405): 876–880 10.1126/science.aat4346
16 T M Chicano , L Dietrich , Almeida N M de , M Akram , E Hartmann , F Leidreiter , D Leopoldus , M Mueller , R Sanchez , G H L Nuijten . et al.. (2021). Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nature Microbiology, 6(9): 1129–1139
https://doi.org/10.1038/s41564-021-00934-8
17 R Danev , H Yanagisawa , M Kikkawa . (2019). Cryo-electron microscopy methodology: current aspects and future directions. Trends in Biochemical Sciences, 44(10): 837–848
https://doi.org/10.1016/j.tibs.2019.04.008
18 D Danso , J Chow , W R Streit . (2019). Plastics: environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19): e01095–19
https://doi.org/10.1128/AEM.01095-19
19 G Devendrapandi , X Liu , R Balu , R Ayyamperumal , M Valan Arasu , M Lavanya , V R Minnam Reddy , W K Kim , P C Karthika . (2024). Innovative remediation strategies for persistent organic pollutants in soil and water: a comprehensive review. Environmental Research, 249: 118404
https://doi.org/10.1016/j.envres.2024.118404
20 J Durairaj , A M Waterhouse , T Mets , T Brodiazhenko , M Abdullah , G Studer , G Tauriello , M Akdel , A Andreeva , A Bateman . et al.. (2023). Uncovering new families and folds in the natural protein universe. Nature, 622(7983): 646–653
https://doi.org/10.1038/s41586-023-06622-3
21 P Edman , E Högfeldt , L G Sillén , P O Kinell . (1950). Method for determination of the amino acid sequence in peptides. Acta Chemica Scandinavica. Series A: Physical and Inorganic Chemistry, 4(7): 283–293
22 F Eisenhaber , B Persson , P Argos . (1995). Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence. Critical Reviews in Biochemistry and Molecular Biology, 30(1): 1–94
https://doi.org/10.3109/10409239509085139
23 X Fang , F Wang , L Liu , J He , D Lin , Y Xiang , K Zhu , X Zhang , H Wu , H Li . et al.. (2023). A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nature Machine Intelligence, 5(10): 1087–1096
https://doi.org/10.1038/s42256-023-00721-6
24 R P Feynman . (1992). There’s plenty of room at the bottom. Journal of microelectromechanical systems, 1(1): 60–66
https://doi.org/10.1109/84.128057
25 D J Filman , S F Marino , J E Ward , L Yang , Z Mester , E Bullitt , D R Lovley , M Strauss . (2019). Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Communications Biology, 2(1): 219
https://doi.org/10.1038/s42003-019-0448-9
26 N Giri , R S Roy , J Cheng . (2023). Deep learning for reconstructing protein structures from cryo-EM density maps: recent advances and future directions. Current Opinion in Structural Biology, 79: 102536
https://doi.org/10.1016/j.sbi.2023.102536
27 H Gong , Y Gao , X Zhou , Y Xiao , W Wang , Y Tang , S Zhou , Y Zhang , W Ji , L Yu . et al.. (2020). Cryo-EM structure of trimeric Mycobacterium smegmatis succinate dehydrogenase with a membrane-anchor SdhF. Nature Communications, 11(1): 4245
https://doi.org/10.1038/s41467-020-18011-9
28 C C Gopalasingam , R M Johnson , G N Chiduza , T Tosha , M Yamamoto , Y Shiro , S V Antonyuk , S P Muench , S S Hasnain . (2019). Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo-electron microscopy. Science Advances, 5(8): eaax1803
https://doi.org/10.1126/sciadv.aax1803
29 D Gouveia , A Chaumot , A Charnot , C Almunia , A François , L Navarro , J Armengaud , A Salvador , O Geffard . (2017). Ecotoxico-proteomics for aquatic environmental monitoring: first in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environmental Science & Technology, 51(22): 13417–13426
https://doi.org/10.1021/acs.est.7b03736
30 P S Huang , S E Boyken , D Baker . (2016). The coming of age of de novo protein design. Nature, 537(7620): 320–327
https://doi.org/10.1038/nature19946
31 S Huang , X Kou , J Shen , G Chen , G Ouyang . (2020). “Armor-plating” enzymes with metal–organic frameworks (MOFs). Angewandte Chemie International Edition, 59(23): 8786–8798
https://doi.org/10.1002/anie.201916474
32 D B Janssen , J P Schanstra . (1994). Engineering proteins for environmental applications. Current Opinion in Biotechnology, 5(3): 253–259
https://doi.org/10.1016/0958-1669(94)90026-4
33 R Jiang , L Shang , R Wang , D Wang , N Wei . (2023). Machine learning based prediction of enzymatic degradation of plastics using encoded protein sequence and effective feature representation. Environmental Science & Technology Letters, 10(7): 557–564
https://doi.org/10.1021/acs.estlett.3c00293
34 J Jumper , R Evans , A Pritzel , T Green , M Figurnov , O Ronneberger , K Tunyasuvunakool , R Bates , A Zidek , A Potapenko . et al.. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873): 583–589
https://doi.org/10.1038/s41586-021-03819-2
35 M Keller , R Hettich . (2009). Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiology and Molecular Biology Reviews, 73(1): 62–70
https://doi.org/10.1128/MMBR.00028-08
36 J C Kendrew , G Bodo , H M Dintzis , R G Parrish , H Wyckoff , D C Phillips . (1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181(4610): 662–666
https://doi.org/10.1038/181662a0
37 A N B T Kessel (2018). Introduction to Protein-Structure, Function, and Motion (2nd ed). New York: Chapman and Hall/CRC
38 H Khakzad , I Igashov , A Schneuing , C Goverde , M Bronstein , B Correia . (2023). A new age in protein design empowered by deep learning. Cell Systems, 14(11): 925–939
https://doi.org/10.1016/j.cels.2023.10.006
39 W M Kincannon , M Zahn , R Clare , J Lusty Beech , A Romberg , J Larson , B Bothner , G T Beckham , J E Mcgeehan , J L Dubois . (2022). Biochemical and structural characterization of an aromatic ring–hydroxylating dioxygenase for terephthalic acid catabolism. Proceedings of the National Academy of Sciences of the United States of America, 119(13): e2121426119
https://doi.org/10.1073/pnas.2121426119
40 G Kolata . (1986). Trying to crack the second half of the genetic code. Science, 233(4768): 1037–1039
https://doi.org/10.1126/science.3738524
41 W Kühlbrandt . (2014). The resolution revolution. Science, 343(6178): 1443–1444
https://doi.org/10.1126/science.1251652
42 D Lee , O Redfern , C Orengo . (2007). Predicting protein function from sequence and structure. Nature Reviews. Molecular Cell Biology, 8(12): 995–1005
https://doi.org/10.1038/nrm2281
43 P Li , Q Chen , T C Wang , N A Vermeulen , B L Mehdi , A Dohnalkoya , N D Browning , D Shen , R Anderson , D A Gomez-Gualdron . et al.. (2018). Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems. Chem, 4(5): 1022–1034
https://doi.org/10.1016/j.chempr.2018.03.001
44 X M Lin , Y Y Wang , X Ma , Y Yan , M Wu , P L Bond , J H Guo . (2018). Evidence of differential adaptation to decreased temperature by anammox bacteria. Environmental Microbiology, 20(10): 3514–3528
https://doi.org/10.1111/1462-2920.14306
45 Z Lin , H Akin , R Rao , B Hie , Z Zhu , W Lu , N Smetanin , R Verkuil , O Kabeli , Y Shmueli . et al.. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637): 1123–1130
https://doi.org/10.1126/science.ade2574
46 H Lu , D J Diaz , N J Czarnecki , C Zhu , W Kim , R Shroff , D J Acosta , B R Alexander , H O Cole , Y Zhang . et al.. (2022). Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 604(7907): 662–667
https://doi.org/10.1038/s41586-022-04599-z
47 M MacLeod , H P H Arp , M B Tekman , A Jahnke . (2021). The global threat from plastic pollution. Science, 373(6550): 61–65
https://doi.org/10.1126/science.abg5433
48 G Masrati , M Landau , N Ben-Tal , A Lupas , M Kosloff , J Kosinski . (2021). Integrative structural biology in the era of accurate structure prediction. Journal of Molecular Biology, 433(20): 167127
https://doi.org/10.1016/j.jmb.2021.167127
49 M Merkx , B Smith , M Jewett . (2019). Engineering sensor proteins. ACS Sensors, 4(12): 3089–3091
https://doi.org/10.1021/acssensors.9b02459
50 D J Mills , S Vitt , M Strauss , S Shima , J Vonck . (2013). De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. eLife, 2: e00218
https://doi.org/10.7554/eLife.00218
51 A I Nesvizhskii . (2014). Proteogenomics: concepts, applications and computational strategies. Nature Methods, 11(11): 1114–1125
https://doi.org/10.1038/nmeth.3144
52 J T Ngo, J Marks, M Karplus (1994). Computational complexity, protein structure prediction, and the Levinthal paradox. In: Merz K M, Le Grand S M, eds. The Protein Folding Problem and Tertiary Structure Prediction. Boston: Birkhäuser Boston
53 C M Oikonomou , G J Jensen . (2017). The development of cryo-EM and how it has advanced microbiology. Nature Microbiology, 2(12): 1577–1579
https://doi.org/10.1038/s41564-017-0073-7
54 S Ovchinnikov , H Park , N Varghese , P S Huang , G A Pavlopoulos , D E Kim , H Kamisetty , N C Kyrpides , D Baker . (2017). Protein structure determination using metagenome sequence data. Science, 355(6322): 294–298
https://doi.org/10.1126/science.aah4043
55 J Pereira , A J Simpkin , M D Hartmann , D J Rigden , R M Keegan , A N Lupas . (2021). High-accuracy protein structure prediction in CASP14. Proteins, 89(12): 1687–1699
https://doi.org/10.1002/prot.26171
56 S Pillai , R Behra , H Nestler , M J F Suter , L Sigg , K Schirmer . (2014). Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3490–3495
https://doi.org/10.1073/pnas.1319388111
57 C Radon , G Mittelstadt , B R Duffus , J Burger , T Hartmann , T Mielke , C Teutloff , S Leimkuhler , P Wendler . (2020). Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase. Nature Communications, 11(1): 1912
https://doi.org/10.1038/s41467-020-15614-0
58 Y Sato , T Yabuki , N Adachi , T Moriya , T Arakawa , M Kawasaki , C Yamada , T Senda , S Fushinobu , T Wakagi . (2020). Crystallographic and cryogenic electron microscopic structures and enzymatic characterization of sulfur oxygenase reductase from Sulfurisphaera tokodaii. Journal of Structural Biology: X, 4: 100030
https://doi.org/10.1016/j.yjsbx.2020.100030
59 A W Senior , R Evans , J Jumper , J Kirkpatrick , L Sifre , T Green , C Qin , A Žídek , A W R Nelson , A Bridgland . et al.. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792): 706–710
https://doi.org/10.1038/s41586-019-1923-7
60 R A Sheldon , P C Pereira . (2017). Biocatalysis engineering: the big picture. Chemical Society Reviews, 46(10): 2678–2691
https://doi.org/10.1039/C6CS00854B
61 C C Su , M Lyu , C E Morgan , J R Bolla , C V Robinson , E W Yu . (2021). A ‘Build and Retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 18(1): 69–75
https://doi.org/10.1038/s41592-020-01021-2
62 M Su , S Chakraborty , Y Osawa , H Zhang . (2020). Cryo-EM reveals the architecture of the dimeric cytochrome P450 CYP102A1 enzyme and conformational changes required for redox partner recognition. Journal of Biological Chemistry, 295(6): 1637–1645
https://doi.org/10.1074/jbc.RA119.011305
63 K Tunyasuvunakool , J Adler , Z Wu , T Green , M Zielinski , A Zidek , A Bridgland , A Cowie , C Meyer , A Laydon . et al.. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873): 590–596
https://doi.org/10.1038/s41586-021-03828-1
64 C Tüting , L Schmidt , I Skalidis , A Sinz , P L Kastritis . (2023). Enabling cryo-EM density interpretation from yeast native cell extracts by proteomics data and AlphaFold structures. Proteomics, 23(17): 2200096
https://doi.org/10.1002/pmic.202200096
65 M Varadi , S Anyango , M Deshpande , S Nair , C Natassia , G Yordanova , D Yuan , O Stroe , G Wood , A Laydon . et al.. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1): D439–D444
https://doi.org/10.1093/nar/gkab1061
66 Z M Wang , W X Hu , H J Zheng . (2020). Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. Science Advances, 6(6): eaay7997
https://doi.org/10.1126/sciadv.aay7997
67 T Watanabe , O Pfeil-Gardiner , J Kahnt , J Koch , B J J S Murphy . (2021). Three-megadalton complex of methanogenic electron-bifurcating and CO2-fixing enzymes. Science, 373(6559): 1151–1156
https://doi.org/10.1126/science.abg5550
68 K Wüthrich . (1990). Protein structure determination in solution by NMR spectroscopy. Journal of Biological Chemistry, 265(36): 22059–22062
https://doi.org/10.1016/S0021-9258(18)45665-7
69 Q Ye, D Wang, N Wei (2023). Engineering biomaterials for the recovery of rare earth elements. Trends in Biotechnology, 18: S0167-7799(23)00302-5
70 H Z Zhang , Y P Pan , L Y Hu , M A Hudson , K S Hofstetter , Z C Xu , M Q Rong , Z Wang , B V V Prasad , S W Lockless . et al.. (2020). TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential. Nature Communications, 11(1): 547
https://doi.org/10.1038/s41467-019-14240-9
71 B Zhu , Y Chen , N Wei . (2019). Engineering biocatalytic and biosorptive materials for environmental applications. Trends in Biotechnology, 37(6): 661–676
https://doi.org/10.1016/j.tibtech.2018.11.005
[1] Xinwan Zhang, Guangyuan Meng, Jinwen Hu, Wanzi Xiao, Tong Li, Lehua Zhang, Peng Chen. Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network[J]. Front. Environ. Sci. Eng., 2023, 17(8): 97-.
[2] Karla Ilić Đurđić, Raluca Ostafe, Olivera Prodanović, Aleksandra Đurđević Đelmaš, Nikolina Popović, Rainer Fischer, Stefan Schillberg, Radivoje Prodanović. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls[J]. Front. Environ. Sci. Eng., 2021, 15(2): 19-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed