|
|
Broadening environmental research in the era of accurate protein structure determination and predictions |
Mingda Zhou1, Tong Wang1, Ke Xu2, Han Wang1, Zibin Li1, Wei-xian Zhang1, Yayi Wang1( ) |
1. State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China 2. Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China |
|
|
Abstract ● The connections between protein structure and environmental research are proposed. ● Cryogenic electron microscopy facilitates studies of environmental protein dynamics. ● Protein structure predictions help understand unknown proteins in the environment. ● Environmental applications aided by protein structural research are anticipated. The deep-learning protein structure prediction method AlphaFold2 has garnered enormous attention beyond the realm of structural biology, for its groundbreaking contribution to solving the “protein folding problem”. In this perspective, we explore the connection between protein structure studies and environmental research, delving into the potential for addressing specific environmental challenges. Proteins are promising for environmental applications because of the functional diversity endowed by their structural complexity. However, structural studies on proteins with environmental significance remain scarce. Here, we present the opportunity to study proteins by advancing experimental determination and deep-learning prediction methods. Specifically, the latest progress in environmental research via cryogenic electron microscopy is highlighted. It allows us to determine the structure of protein complexes in their native state within cells at molecular resolution, revealing environmentally-associated structural dynamics. With the remarkable advancements in computational power and experimental resolution, the study of protein structure and dynamics has reached unprecedented depth and accuracy. These advancements will undoubtedly accelerate the establishment of comprehensive environmental protein structural and functional databases. Tremendous opportunities for protein engineering exist to enable innovative solutions for environmental applications, such as the degradation of persistent contaminants, and the recovery of valuable metals as well as rare earth elements.
|
Keywords
Environmental proteins
Protein structure
Cryogenic electron microscopy
Protein structure prediction
Protein engineering
Artificial Intelligence
|
Corresponding Author(s):
Yayi Wang
|
About author: Li Liu and Yanqing Liu contributed equally to this work. |
Issue Date: 22 April 2024
|
|
1 |
E Abola , P Kuhn , T Earnest , R C Stevens . (2000). Automation of X-ray crystallography. Nature Structural Biology, 7(11): 973–977
https://doi.org/10.1038/80754
|
2 |
N Adachi , T Yamaguchi , T Moriya , M Kawasaki , K Koiwai , A Shinoda , Y Yamada , F Yumoto , T Kohzuma , T Senda . (2021). 2.85 and 2.99 A resolution structures of 110 kDa nitrite reductase determined by 200 kV cryogenic electron microscopy. Journal of Structural Biology, 213(3): 107768
https://doi.org/10.1016/j.jsb.2021.107768
|
3 |
R Aebersold , M Mann . (2016). Mass-spectrometric exploration of proteome structure and function. Nature, 537(7620): 347–355
https://doi.org/10.1038/nature19949
|
4 |
M Akram , A Dietl , U Mersdorf , S Prinz , W Maalcke , J Keltjens , C Ferousi , N M De Almeida , J Reimann , B Kartal , M S M Jetten , K Parey , T R M Barends . (2019). A 192-heme electron transfer network in the hydrazine dehydrogenase complex. Science Advances, 5(4): eaav4310
https://doi.org/10.1126/sciadv.aav4310
|
5 |
C B Anfinsen . (1973). Principles that govern the folding of protein chains. Science, 181(4096): 223–230
https://doi.org/10.1126/science.181.4096.223
|
6 |
C K Arya , S Yadav , J Fine , A Casanal , G Chopra , G Ramanathan , K R Vinothkumar , R Subramanian . (2020). A 2-Tyr-1-carboxylate mononuclear iron center forms the active site of a paracoccus dimethylformamidase. Angewandte Chemie International Edition, 59(39): 16961–16966
https://doi.org/10.1002/anie.202005332
|
7 |
M Baek , F Dimaio , I Anishchenko , J Dauparas , S Ovchinnikov , G R Lee , J Wang , Q Cong , L N Kinch , R D Schaeffer . et al.. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557): 871–876
https://doi.org/10.1126/science.abj8754
|
8 |
X C Bai , G Mcmullan , S H W Scheres . (2015). How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 40(1): 49–57
https://doi.org/10.1016/j.tibs.2014.10.005
|
9 |
U T Bornscheuer , G W Huisman , R J Kazlauskas , S Lutz , J C Moore , K Robins . (2012). Engineering the third wave of biocatalysis. Nature, 485(7397): 185–194
https://doi.org/10.1038/nature11117
|
10 |
P Bryant , G Pozzati , A Elofsson . (2022). Improved prediction of protein-protein interactions using AlphaFold2. Nature Communications, 13(1): 1265
https://doi.org/10.1038/s41467-022-28865-w
|
11 |
E Callaway . (2022). The entire protein universe’: AI predicts shape of nearly every known protein. Nature, 608(7921): 15–16
https://doi.org/10.1038/d41586-022-02083-2
|
12 |
W H Chang , H H Lin , I K Tsai , S H Huang , S C Chung , I P Tu , S S F Yu , S I Chan . (2021). Copper centers in the cryo-EM structure of particulate methane monooxygenase reveal the catalytic machinery of methane oxidation. Journal of the American Chemical Society, 143(26): 9922–9932
https://doi.org/10.1021/jacs.1c04082
|
13 |
C Y Chen , Y C Chang , B L Lin , C H Huang , M D Tsai . (2019). Temperature-resolved cryo-EM uncovers structural bases of temperature-dependent enzyme functions. Journal of the American Chemical Society, 141(51): 19983–19987
https://doi.org/10.1021/jacs.9b10687
|
14 |
K Chen , F H Arnold . (2020). Engineering new catalytic activities in enzymes. Nature Catalysis, 3(3): 203–213
https://doi.org/10.1038/s41929-019-0385-5
|
15 |
Y Cheng (2018). Single-particle cryo-EM—How did it get here and where will it go? Science, 361(6405): 876–880 10.1126/science.aat4346
|
16 |
T M Chicano , L Dietrich , Almeida N M de , M Akram , E Hartmann , F Leidreiter , D Leopoldus , M Mueller , R Sanchez , G H L Nuijten . et al.. (2021). Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nature Microbiology, 6(9): 1129–1139
https://doi.org/10.1038/s41564-021-00934-8
|
17 |
R Danev , H Yanagisawa , M Kikkawa . (2019). Cryo-electron microscopy methodology: current aspects and future directions. Trends in Biochemical Sciences, 44(10): 837–848
https://doi.org/10.1016/j.tibs.2019.04.008
|
18 |
D Danso , J Chow , W R Streit . (2019). Plastics: environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19): e01095–19
https://doi.org/10.1128/AEM.01095-19
|
19 |
G Devendrapandi , X Liu , R Balu , R Ayyamperumal , M Valan Arasu , M Lavanya , V R Minnam Reddy , W K Kim , P C Karthika . (2024). Innovative remediation strategies for persistent organic pollutants in soil and water: a comprehensive review. Environmental Research, 249: 118404
https://doi.org/10.1016/j.envres.2024.118404
|
20 |
J Durairaj , A M Waterhouse , T Mets , T Brodiazhenko , M Abdullah , G Studer , G Tauriello , M Akdel , A Andreeva , A Bateman . et al.. (2023). Uncovering new families and folds in the natural protein universe. Nature, 622(7983): 646–653
https://doi.org/10.1038/s41586-023-06622-3
|
21 |
P Edman , E Högfeldt , L G Sillén , P O Kinell . (1950). Method for determination of the amino acid sequence in peptides. Acta Chemica Scandinavica. Series A: Physical and Inorganic Chemistry, 4(7): 283–293
|
22 |
F Eisenhaber , B Persson , P Argos . (1995). Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence. Critical Reviews in Biochemistry and Molecular Biology, 30(1): 1–94
https://doi.org/10.3109/10409239509085139
|
23 |
X Fang , F Wang , L Liu , J He , D Lin , Y Xiang , K Zhu , X Zhang , H Wu , H Li . et al.. (2023). A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nature Machine Intelligence, 5(10): 1087–1096
https://doi.org/10.1038/s42256-023-00721-6
|
24 |
R P Feynman . (1992). There’s plenty of room at the bottom. Journal of microelectromechanical systems, 1(1): 60–66
https://doi.org/10.1109/84.128057
|
25 |
D J Filman , S F Marino , J E Ward , L Yang , Z Mester , E Bullitt , D R Lovley , M Strauss . (2019). Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Communications Biology, 2(1): 219
https://doi.org/10.1038/s42003-019-0448-9
|
26 |
N Giri , R S Roy , J Cheng . (2023). Deep learning for reconstructing protein structures from cryo-EM density maps: recent advances and future directions. Current Opinion in Structural Biology, 79: 102536
https://doi.org/10.1016/j.sbi.2023.102536
|
27 |
H Gong , Y Gao , X Zhou , Y Xiao , W Wang , Y Tang , S Zhou , Y Zhang , W Ji , L Yu . et al.. (2020). Cryo-EM structure of trimeric Mycobacterium smegmatis succinate dehydrogenase with a membrane-anchor SdhF. Nature Communications, 11(1): 4245
https://doi.org/10.1038/s41467-020-18011-9
|
28 |
C C Gopalasingam , R M Johnson , G N Chiduza , T Tosha , M Yamamoto , Y Shiro , S V Antonyuk , S P Muench , S S Hasnain . (2019). Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo-electron microscopy. Science Advances, 5(8): eaax1803
https://doi.org/10.1126/sciadv.aax1803
|
29 |
D Gouveia , A Chaumot , A Charnot , C Almunia , A François , L Navarro , J Armengaud , A Salvador , O Geffard . (2017). Ecotoxico-proteomics for aquatic environmental monitoring: first in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environmental Science & Technology, 51(22): 13417–13426
https://doi.org/10.1021/acs.est.7b03736
|
30 |
P S Huang , S E Boyken , D Baker . (2016). The coming of age of de novo protein design. Nature, 537(7620): 320–327
https://doi.org/10.1038/nature19946
|
31 |
S Huang , X Kou , J Shen , G Chen , G Ouyang . (2020). “Armor-plating” enzymes with metal–organic frameworks (MOFs). Angewandte Chemie International Edition, 59(23): 8786–8798
https://doi.org/10.1002/anie.201916474
|
32 |
D B Janssen , J P Schanstra . (1994). Engineering proteins for environmental applications. Current Opinion in Biotechnology, 5(3): 253–259
https://doi.org/10.1016/0958-1669(94)90026-4
|
33 |
R Jiang , L Shang , R Wang , D Wang , N Wei . (2023). Machine learning based prediction of enzymatic degradation of plastics using encoded protein sequence and effective feature representation. Environmental Science & Technology Letters, 10(7): 557–564
https://doi.org/10.1021/acs.estlett.3c00293
|
34 |
J Jumper , R Evans , A Pritzel , T Green , M Figurnov , O Ronneberger , K Tunyasuvunakool , R Bates , A Zidek , A Potapenko . et al.. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873): 583–589
https://doi.org/10.1038/s41586-021-03819-2
|
35 |
M Keller , R Hettich . (2009). Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiology and Molecular Biology Reviews, 73(1): 62–70
https://doi.org/10.1128/MMBR.00028-08
|
36 |
J C Kendrew , G Bodo , H M Dintzis , R G Parrish , H Wyckoff , D C Phillips . (1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181(4610): 662–666
https://doi.org/10.1038/181662a0
|
37 |
A N B T Kessel (2018). Introduction to Protein-Structure, Function, and Motion (2nd ed). New York: Chapman and Hall/CRC
|
38 |
H Khakzad , I Igashov , A Schneuing , C Goverde , M Bronstein , B Correia . (2023). A new age in protein design empowered by deep learning. Cell Systems, 14(11): 925–939
https://doi.org/10.1016/j.cels.2023.10.006
|
39 |
W M Kincannon , M Zahn , R Clare , J Lusty Beech , A Romberg , J Larson , B Bothner , G T Beckham , J E Mcgeehan , J L Dubois . (2022). Biochemical and structural characterization of an aromatic ring–hydroxylating dioxygenase for terephthalic acid catabolism. Proceedings of the National Academy of Sciences of the United States of America, 119(13): e2121426119
https://doi.org/10.1073/pnas.2121426119
|
40 |
G Kolata . (1986). Trying to crack the second half of the genetic code. Science, 233(4768): 1037–1039
https://doi.org/10.1126/science.3738524
|
41 |
W Kühlbrandt . (2014). The resolution revolution. Science, 343(6178): 1443–1444
https://doi.org/10.1126/science.1251652
|
42 |
D Lee , O Redfern , C Orengo . (2007). Predicting protein function from sequence and structure. Nature Reviews. Molecular Cell Biology, 8(12): 995–1005
https://doi.org/10.1038/nrm2281
|
43 |
P Li , Q Chen , T C Wang , N A Vermeulen , B L Mehdi , A Dohnalkoya , N D Browning , D Shen , R Anderson , D A Gomez-Gualdron . et al.. (2018). Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems. Chem, 4(5): 1022–1034
https://doi.org/10.1016/j.chempr.2018.03.001
|
44 |
X M Lin , Y Y Wang , X Ma , Y Yan , M Wu , P L Bond , J H Guo . (2018). Evidence of differential adaptation to decreased temperature by anammox bacteria. Environmental Microbiology, 20(10): 3514–3528
https://doi.org/10.1111/1462-2920.14306
|
45 |
Z Lin , H Akin , R Rao , B Hie , Z Zhu , W Lu , N Smetanin , R Verkuil , O Kabeli , Y Shmueli . et al.. (2023). Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 379(6637): 1123–1130
https://doi.org/10.1126/science.ade2574
|
46 |
H Lu , D J Diaz , N J Czarnecki , C Zhu , W Kim , R Shroff , D J Acosta , B R Alexander , H O Cole , Y Zhang . et al.. (2022). Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 604(7907): 662–667
https://doi.org/10.1038/s41586-022-04599-z
|
47 |
M MacLeod , H P H Arp , M B Tekman , A Jahnke . (2021). The global threat from plastic pollution. Science, 373(6550): 61–65
https://doi.org/10.1126/science.abg5433
|
48 |
G Masrati , M Landau , N Ben-Tal , A Lupas , M Kosloff , J Kosinski . (2021). Integrative structural biology in the era of accurate structure prediction. Journal of Molecular Biology, 433(20): 167127
https://doi.org/10.1016/j.jmb.2021.167127
|
49 |
M Merkx , B Smith , M Jewett . (2019). Engineering sensor proteins. ACS Sensors, 4(12): 3089–3091
https://doi.org/10.1021/acssensors.9b02459
|
50 |
D J Mills , S Vitt , M Strauss , S Shima , J Vonck . (2013). De novo modeling of the F420-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. eLife, 2: e00218
https://doi.org/10.7554/eLife.00218
|
51 |
A I Nesvizhskii . (2014). Proteogenomics: concepts, applications and computational strategies. Nature Methods, 11(11): 1114–1125
https://doi.org/10.1038/nmeth.3144
|
52 |
J T Ngo, J Marks, M Karplus (1994). Computational complexity, protein structure prediction, and the Levinthal paradox. In: Merz K M, Le Grand S M, eds. The Protein Folding Problem and Tertiary Structure Prediction. Boston: Birkhäuser Boston
|
53 |
C M Oikonomou , G J Jensen . (2017). The development of cryo-EM and how it has advanced microbiology. Nature Microbiology, 2(12): 1577–1579
https://doi.org/10.1038/s41564-017-0073-7
|
54 |
S Ovchinnikov , H Park , N Varghese , P S Huang , G A Pavlopoulos , D E Kim , H Kamisetty , N C Kyrpides , D Baker . (2017). Protein structure determination using metagenome sequence data. Science, 355(6322): 294–298
https://doi.org/10.1126/science.aah4043
|
55 |
J Pereira , A J Simpkin , M D Hartmann , D J Rigden , R M Keegan , A N Lupas . (2021). High-accuracy protein structure prediction in CASP14. Proteins, 89(12): 1687–1699
https://doi.org/10.1002/prot.26171
|
56 |
S Pillai , R Behra , H Nestler , M J F Suter , L Sigg , K Schirmer . (2014). Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proceedings of the National Academy of Sciences of the United States of America, 111(9): 3490–3495
https://doi.org/10.1073/pnas.1319388111
|
57 |
C Radon , G Mittelstadt , B R Duffus , J Burger , T Hartmann , T Mielke , C Teutloff , S Leimkuhler , P Wendler . (2020). Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase. Nature Communications, 11(1): 1912
https://doi.org/10.1038/s41467-020-15614-0
|
58 |
Y Sato , T Yabuki , N Adachi , T Moriya , T Arakawa , M Kawasaki , C Yamada , T Senda , S Fushinobu , T Wakagi . (2020). Crystallographic and cryogenic electron microscopic structures and enzymatic characterization of sulfur oxygenase reductase from Sulfurisphaera tokodaii. Journal of Structural Biology: X, 4: 100030
https://doi.org/10.1016/j.yjsbx.2020.100030
|
59 |
A W Senior , R Evans , J Jumper , J Kirkpatrick , L Sifre , T Green , C Qin , A Žídek , A W R Nelson , A Bridgland . et al.. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792): 706–710
https://doi.org/10.1038/s41586-019-1923-7
|
60 |
R A Sheldon , P C Pereira . (2017). Biocatalysis engineering: the big picture. Chemical Society Reviews, 46(10): 2678–2691
https://doi.org/10.1039/C6CS00854B
|
61 |
C C Su , M Lyu , C E Morgan , J R Bolla , C V Robinson , E W Yu . (2021). A ‘Build and Retrieve’ methodology to simultaneously solve cryo-EM structures of membrane proteins. Nature Methods, 18(1): 69–75
https://doi.org/10.1038/s41592-020-01021-2
|
62 |
M Su , S Chakraborty , Y Osawa , H Zhang . (2020). Cryo-EM reveals the architecture of the dimeric cytochrome P450 CYP102A1 enzyme and conformational changes required for redox partner recognition. Journal of Biological Chemistry, 295(6): 1637–1645
https://doi.org/10.1074/jbc.RA119.011305
|
63 |
K Tunyasuvunakool , J Adler , Z Wu , T Green , M Zielinski , A Zidek , A Bridgland , A Cowie , C Meyer , A Laydon . et al.. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873): 590–596
https://doi.org/10.1038/s41586-021-03828-1
|
64 |
C Tüting , L Schmidt , I Skalidis , A Sinz , P L Kastritis . (2023). Enabling cryo-EM density interpretation from yeast native cell extracts by proteomics data and AlphaFold structures. Proteomics, 23(17): 2200096
https://doi.org/10.1002/pmic.202200096
|
65 |
M Varadi , S Anyango , M Deshpande , S Nair , C Natassia , G Yordanova , D Yuan , O Stroe , G Wood , A Laydon . et al.. (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1): D439–D444
https://doi.org/10.1093/nar/gkab1061
|
66 |
Z M Wang , W X Hu , H J Zheng . (2020). Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. Science Advances, 6(6): eaay7997
https://doi.org/10.1126/sciadv.aay7997
|
67 |
T Watanabe , O Pfeil-Gardiner , J Kahnt , J Koch , B J J S Murphy . (2021). Three-megadalton complex of methanogenic electron-bifurcating and CO2-fixing enzymes. Science, 373(6559): 1151–1156
https://doi.org/10.1126/science.abg5550
|
68 |
K Wüthrich . (1990). Protein structure determination in solution by NMR spectroscopy. Journal of Biological Chemistry, 265(36): 22059–22062
https://doi.org/10.1016/S0021-9258(18)45665-7
|
69 |
Q Ye, D Wang, N Wei (2023). Engineering biomaterials for the recovery of rare earth elements. Trends in Biotechnology, 18: S0167-7799(23)00302-5
|
70 |
H Z Zhang , Y P Pan , L Y Hu , M A Hudson , K S Hofstetter , Z C Xu , M Q Rong , Z Wang , B V V Prasad , S W Lockless . et al.. (2020). TrkA undergoes a tetramer-to-dimer conversion to open TrkH which enables changes in membrane potential. Nature Communications, 11(1): 547
https://doi.org/10.1038/s41467-019-14240-9
|
71 |
B Zhu , Y Chen , N Wei . (2019). Engineering biocatalytic and biosorptive materials for environmental applications. Trends in Biotechnology, 37(6): 661–676
https://doi.org/10.1016/j.tibtech.2018.11.005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|