Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (8) : 97    https://doi.org/10.1007/s11783-023-1697-x
RESEARCH ARTICLE
Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network
Xinwan Zhang1, Guangyuan Meng1, Jinwen Hu1, Wanzi Xiao1, Tong Li2, Lehua Zhang1,3,4, Peng Chen1()
1. National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Continuing Education Center, Bozhou University, Bozhou 236800, China
3. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
4. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(4848 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Titanium-based flow-through electrode achieved high Cr(VI) reduction efficiency.

● Flow-through pattern enhanced the mass transfer and reduced cathodic polarization.

● BPNN predicted the optimal electroreduction conditions of flow-through cell.

Flow-through electrodes have been demonstrated to be effective for electroreduction of Cr(VI), but shortcomings are tedious preparation and short lifetimes. Herein, porous titanium available in the market was studied as a flow-through electrode for Cr(VI) electroreduction. In addition, the intelligent prediction of electrolytic performance based on a back propagation neural network (BPNN) was developed. Voltametric studies revealed that Cr(VI) electroreduction was a diffusion-controlled process. Use of the flow-through mode achieved a high limiting diffusion current as a result of enhanced mass transfer and favorable kinetics. Electroreduction of Cr(VI) in the flow-through system was 1.95 times higher than in a parallel-plate electrode system. When the influent (initial pH 2.0 and 106 mg/L Cr(VI)) was treated at 5.0 V and a flux of 51 L/(h·m2), a reduction efficiency of ~99.9% was obtained without cyclic electrolysis process. Sulfate served as the supporting electrolyte and pH regulator, as reactive CrSO72− species were formed as a result of feeding HSO4. Cr(III) was confirmed as the final product due to the sequential three-electron transport or disproportionation of the intermediate. The developed BPNN model achieved good prediction accuracy with respect to Cr(VI) electroreduction with a high correlation coefficient (R2 = 0.943). Additionally, the electroreduction efficiencies for various operating inputs were predicted based on the BPNN model, which demonstrates the evolutionary role of intelligent systems in future electrochemical technologies.

Keywords Flow-through electrode      Hexavalent chromium      Heavy metals      Neural network      Artificial intelligence     
Corresponding Author(s): Peng Chen   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 01 March 2023
 Cite this article:   
Xinwan Zhang,Guangyuan Meng,Jinwen Hu, et al. Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network[J]. Front. Environ. Sci. Eng., 2023, 17(8): 97.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1697-x
https://academic.hep.com.cn/fese/EN/Y2023/V17/I8/97
Fig.1  (a) Schematic of experimental setup for electroreduction of Cr(VI) using flow-through electrode system; (b) schematic of effluent modes.
BPNN parameterNumber/Type
Input layer neurons5
Output layer neurons1
Hidden layers1
Hidden layer neurons5
Activation function for hidden layersigmoid
Activation function for output layerlinear
Training algorithmLevenberg–Marquardt
Training times2000
Tab.1  Parameters for the back propagation neural network (BPNN) model
Fig.2  Study on Cr(VI) electroreduction by Ti electrode. (a) Kinetic study on Cr(VI) reduction in flow-through mode and parallel-plate mode. Electrolysis conditions: applied voltage of 5.0 V, initial pH 2.0, 106 mg/L Cr(VI), 50 mmol/L Na2SO4; (b) CV for Ti electrode in pH 2.0 and 50 mmol/L Na2SO4 solution. Black line refers to solution without the addition of Cr(VI); red line refers to solution with the addition of Cr(VI) (106 mg/L); (c) CV for Ti electrode in pH 2.0 and 106 mg/L Cr(VI) solution containing 50 mmol/L Na2SO4; (d) LSV for porous Ti electrode in flow-through mode at a scan rate of 5.0 mV/s and flux of 0–127 L/(h·m2): test solution 18 mg/L Cr(VI) in 0.1 mol/L H2SO4.
Fig.3  Cr(VI) reduction mechanism by flow-through electrode. (a) CV for Ti electrode in 106 mg/L Cr(VI) and 50 mmol/L Na2SO4 solution at pH 1.0, pH 2.0, pH 3.0: pH varied by additions of H2SO4; (b) CV for Ti electrode in 106 mg/L Cr(VI) solution at pH 1.0: pH created by additions of either H2SO4, HNO3, or HCl; (c) relationship between the flux and rate constant for mass transfer in flow-through electrode system; (d) schematic for Cr(VI) electroreduction by parallel-plate and flow-through modes.
ConditionCr(VI) species distribution (%)
Cr2O72?H2CrO4(aq)HCrO4?CrSO72?CrO3Cl?
pH 1.0 HNO37.893.9082.25
pH 1.0 HCl7.403.9581.172.02
pH 1.0 H2SO45.893.4471.6215.10
pH 1.0 H2SO4 + 0.05 mol/L Na2SO44.692.9062.4027.26
pH 2.0 H2SO4 + 0.05 mol/L Na2SO47.203.8980.007.15
pH 3.0 H2SO4 + 0.05 mol/L Na2SO48.150.0484.570.97
Tab.2  Species distribution of Cr(VI) in Cr(VI) solution (106 mg/L) at various pH and in the presence of various anions
Fig.4  Single-pass flow-through test for Cr(VI) reduction using flow-through electrode. Effect of experimental parameters on the reduction performance for Cr(VI) at different (a) effluent modes, (b) initial pH, (c) flux, (d) applied voltage, (e) initial Cr(VI) concentration, and (f) long-term stability.
Fig.5  (a) Schematic representation of a back propagation neural network; (b) Measured and BPNN-predicted reduction efficiencies for Cr(VI); (c) Correlation of measured and BPNN-predicted reduction efficiencies for Cr(VI) in this study; Effect of pH (d), effect of applied voltage (e), effect of influent flux (f) predicted by BPNN.
1 G Almaguer-Busso , G Velasco-Martínez , G Carreño-Aguilera , S Gutiérrez-Granados , E Torres-Reyes , A Alatorre-Ordaz . (2009). A comparative study of global hexavalent chromium removal by chemical and electrochemical processes. Electrochemistry Communications, 11(6): 1097–1100
https://doi.org/10.1016/j.elecom.2009.03.012
2 B V Ayodele , M A Alsaffar , S I Mustapa , D V N Vo . (2020). Backpropagation neural networks modelling of photocatalytic degradation of organic pollutants using TiO2-based photocatalysts. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 95: 2739–2749
3 R C Barik , J A Wharton , R Wood , K R Stokes . (2020). Further studies into the flow corrosion cathodic mass transfer kinetics of copper and nickel-aluminium bronze wall-jet electrodes. Corrosion Science, 170: 108660
https://doi.org/10.1016/j.corsci.2020.108660
4 Barrera-Díaz C, Lugo-Lugo V, Roa-Morales G, Natividad R, Martínez-Delgadillo S A (2011). Enhancing the electrochemical Cr(VI) reduction in aqueous solution. Journal of Hazardous Materials, 185(2−3): 1362−1368
5 F Chang , C K Tian , S T Liu , J R Ni . (2016). Discrepant hexavalent chromium tolerance and detoxification by two strains of Trichoderma asperellum with high homology. Chemical Engineering Journal, 298: 75–81
https://doi.org/10.1016/j.cej.2016.04.023
6 A J Chaudhary , N C Goswami , S M Grimes . (2003). Electrolytic removal of hexavalent chromium from aqueous solutions. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 78(8): 877–883
https://doi.org/10.1002/jctb.871
7 G Chen . (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1): 11–41
https://doi.org/10.1016/j.seppur.2003.10.006
8 H M Chen , S Lien Lo . (2012). Neural network-based multi-back-propagation prediction model of a domestic wastewater treatment plant for an under-construction sewer system. Journal of the Chinese Institute of Engineers, 35(7): 815–826
https://doi.org/10.1080/02533839.2012.708516
9 P Chen , R Cheng , G Y Meng , Z M Ren , J L Xu , P F Song , H L Wang , L H Zhang . (2021). Performance of the graphite felt flow-through electrode in hexavalent chromium reduction using a single-pass mode. Journal of Hazardous Materials, 416: 125768
https://doi.org/10.1016/j.jhazmat.2021.125768
10 P Chen , D Yin , P F Song , Y Y Liu , L K Cai , H L Wang , L H Zhang . (2020). Demulsification and oil recovery from oil-in-water cutting fluid wastewater using electrochemical micromembrane technology. Journal of Cleaner Production, 244: 118698
https://doi.org/10.1016/j.jclepro.2019.118698
11 I Cohen , E Avraham , Y Bouhadana , A Soffer , D Aurbach . (2015). The effect of the flow-regime, reversal of polarization, and oxygen on the long term stability in capacitive de-ionization processes. Electrochimica Acta, 153: 106–114
https://doi.org/10.1016/j.electacta.2014.12.007
12 F I Danilov , V S Protsenko . (1998). Electroreduction of hexavalent chromium compounds on the gold electrode. Russian Journal of Electrochemistry, 34: 276–281
13 H D Doan , J N Wu , R Mitzakov . (2006). Combined electrochemical and biological treatment of industrial wastewater using porous electrodes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 81(8): 1398–1408
https://doi.org/10.1002/jctb.1575
14 M A Goulet , M Eikerling , E Kjeang . (2015). Direct measurement of electrochemical reaction kinetics in flow-through porous electrodes. Electrochemistry Communications, 57: 14–17
https://doi.org/10.1016/j.elecom.2015.04.019
15 M A Goulet , A Habisch , E Kjeang . (2016). In situ enhancement of flow-through porous electrodes with carbon nanotubes via flowing deposition. Electrochimica Acta, 206: 36–44
https://doi.org/10.1016/j.electacta.2016.04.147
16 Y P He , Y J Dong , W M Huang , X Q Tang , H H Liu , H B Lin , H D Li . (2015). Investigation of boron-doped diamond on porous Ti for electrochemical oxidation of acetaminophen pharmaceutical drug. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 759: 167–173
https://doi.org/10.1016/j.jelechem.2015.11.011
17 J P Hoare . (1979). On the mechanisms of chromium electrodeposition. Journal of the Electrochemical Society, 126(2): 190–199
https://doi.org/10.1149/1.2129004
18 J P Hoare . (1983). A voltammetric study of the reduction of chromic acid on bright platinum. Journal of the Electrochemical Society, 130(7): 1475–1479
https://doi.org/10.1149/1.2120013
19 Q H Ji , D W Yu , G Zhang , H C Lan , H J Liu , J H Qu . (2015). Microfluidic flow-through polyaniline supported by lamellar-structured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium. Environmental Science & Technology, 49(22): 13534–13541
https://doi.org/10.1021/acs.est.5b03314
20 W Jin , H Du , K Yan , S L Zheng , Y Zhang . (2016). Improved electrochemical Cr(VI) detoxification by integrating the direct and indirect pathways. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 775: 325–328
https://doi.org/10.1016/j.jelechem.2016.06.030
21 J Jorne , E Roayaie . (1986). Experimental studies of flow-through porous graphite chlorine electrode. Journal of the Electrochemical Society, 133(4): 696–701
https://doi.org/10.1149/1.2108657
22 R T Kachoosangi , R G Compton . (2013). Voltammetric determination of Chromium(VI) using a gold film modified carbon composite electrode. Sensors and Actuators. B, Chemical, 178: 555–562
https://doi.org/10.1016/j.snb.2012.12.122
23 B Ke , H Nguyen , X N Bui , H B Bui , T Nguyen-Thoi . (2021). Prediction of the sorption efficiency of heavy metal onto biochar using a robust combination of fuzzy C-means clustering and back-propagation neural network. Journal of Environmental Management, 293: 112808
https://doi.org/10.1016/j.jenvman.2021.112808
24 M J Kim , Y Seo , M A Cruz , B J Wiley . (2019). Metal nanowire felt as a flow-through electrode for high-productivity electrochemistry. ACS Nano, 13(6): 6998–7009
https://doi.org/10.1021/acsnano.9b02058
25 L Leita , A Margon , A Pastrello , I Arčon , M Contin , D Mosetti . (2009). Soil humic acids may favour the persistence of hexavalent chromium in soil. Environmental Pollution, 157(6): 1862–1866
https://doi.org/10.1016/j.envpol.2009.01.020
26 F H Li , Y L Gong , J H Gao . (2019). Influence of pore aperture and pore density on photoelectrochemical performance of titanium dioxide nano-porous thin films. International Journal of Electrochemical Science, 14: 3628–3643
27 J H Li , R Cheng , J A Chen , J R Lan , S Y Li , M Zhou , T Y Zeng , H B Hou . (2021a). Microscopic mechanism about the selective adsorption of Cr(VI) from salt solution on nitrogen-doped carbon aerogel microsphere pyrolysis products. Science of the Total Environment, 798: 149331
https://doi.org/10.1016/j.scitotenv.2021.149331
28 Y Li , Y X Zhang , G S Xia , J H Zhan , G Yu , Y J Wang . (2021b). Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment. Frontiers of Environmental Science & Engineering, 15(1): 1
29 H Liu , G P Tian , W Y Wang , J X Zhang , T S Wu , X Y Ni , Y H Wu . (2021). Carbon fiber-based flow-through electrode system (FES) for Cr(VI) removal at near neutral pHs via Cr(VI) reduction and in-situ adsorption of Cr(III) precipitates. Chemical Engineering Journal, 420: 127622
https://doi.org/10.1016/j.cej.2020.127622
30 W K Liu , L Yang , S H Xu , Y Chen , B H Liu , Z Li , C L Jiang . (2018). Efficient removal of hexavalent chromium from water by an adsorption–reduction mechanism with sandwiched nanocomposites. RSC Advances, 8(27): 15087–15093
https://doi.org/10.1039/C8RA01805G
31 W Ma , J Gao , Z Chen , J L Hu , G Xin , Y Z Pan , Z Zhang , D Z Tan . (2021). A new method of Cr(VI) reduction using SiC doped carbon electrode and Cr(III) recovery by hydrothermal precipitation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 610: 125724
https://doi.org/10.1016/j.colsurfa.2020.125724
32 S Martinez-Delgadillo , H Mollinedo-Ponce , V Mendoza-Escamilla , C Gutiérrez-Torres , J Jiménez-Bernal , C Barrera-Diaz . (2012). Performance evaluation of an electrochemical reactor used to reduce Cr(VI) from aqueous media applying CFD simulations. Journal of Cleaner Production, 34: 120–124
https://doi.org/10.1016/j.jclepro.2011.10.036
33 M Nasr , M Ateia , K Hassan . (2016). Artificial intelligence for greywater treatment using electrocoagulation process. Separation Science and Technology, 51(1): 96–105
https://doi.org/10.1080/01496395.2015.1062399
34 M K Nayunigari , S K Gupta , M Nasr , G Andaluri , R P S Suri , A Maity . (2020). Artificial neural network and cost estimation for Cr(VI) removal using polycationic composite adsorbent. Water and Environment Journal, 34(S1): 29–40
https://doi.org/10.1111/wej.12501
35 E Panousi , D Mamais , C Noutsopoulos , K Mpertoli , C Kantzavelou , E Nyktari , I Kavallari , M Nasioka , A Kaldis . (2019). Biological groundwater treatment for hexavalent chromium removal at low chromium concentrations under anoxic conditions. Environmental Technology, 40(3): 365–373
https://doi.org/10.1080/09593330.2017.1393013
36 L Peng , H Liu , W L Wang , Z B Xu , X Y Ni , Y H Wu , Q Y Wu , H Y Hu . (2020). Degradation of methylisothiazolinone biocide using a carbon fiber felt-based flow-through electrode system (FES) via anodic oxidation. Chemical Engineering Journal, 384: 123239
https://doi.org/10.1016/j.cej.2019.123239
37 H X Qin , Y Y Bian , Y X Zhang , L F Liu , Z F Bian . (2017). Effect of Ti(III) surface defects on the process of photocatalytic reduction of hexavalent chromium. Chinese Journal of Chemistry, 35(2): 203–208
https://doi.org/10.1002/cjoc.201600578
38 M H Schnoor , C D Vecitis . (2013). Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: effects of flow rate, ionic strength, and cathode material. Journal of Physical Chemistry C, 117(6): 2855–2867
https://doi.org/10.1021/jp3112099
39 C M Stern , T O Jegede , V A Hulse , N Elgrishi . (2021). Electrochemical reduction of Cr(VI) in water: lessons learned from fundamental studies and applications. Chemical Society Reviews, 50(3): 1642–1667
https://doi.org/10.1039/D0CS01165G
40 S Survilienė , S Eugénio , R Vilar . (2011). Chromium electrodeposition from [BMIm][BF4] ionic liquid. Journal of Applied Electrochemistry, 41(1): 107–114
https://doi.org/10.1007/s10800-010-0218-3
41 Tian Y, Huang L P, Zhou X H, Wu C B (2012). Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions. Journal of Hazardous Materials, 225−226: 15−20
42 G Velasco , S Gutiérrez , I Rodriguez . (2007). Analysis of the use of copper electrode in a filter-press electrochemical reactor for the electrochemical reduction of Cr(VI). ECS Transactions, 3(18): 57–65
https://doi.org/10.1149/1.2753224
43 A Vengosh , R Coyte , J Karr , J S Harkness , A J Kondash , L S Ruhl , R B Merola , G S Dywer . (2016). Origin of hexavalent chromium in drinking water wells from the piedmont aquifers of North Carolina. Environmental Science & Technology Letters, 3(12): 409–414
https://doi.org/10.1021/acs.estlett.6b00342
44 C M Welch , O Nekrassova , R G Compton . (2005). Reduction of hexavalent chromium at solid electrodes in acidic media: reaction mechanism and analytical applications. Talanta, 65: 74–80
45 Y Yang , M H Diao , M M Gao , X F Sun , X W Liu , G H Zhang , Z Qi , S G Wang . (2014). Facile preparation of graphene/polyaniline composite and its application for electrocatalysis hexavalent chromium reduction. Electrochimica Acta, 132: 496–503
https://doi.org/10.1016/j.electacta.2014.03.152
46 C Y Zhang , D He , J X Ma , W W Tang , T D Waite . (2019). Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochimica Acta, 299: 727–735
https://doi.org/10.1016/j.electacta.2019.01.058
47 S Zhang , H C Lan , Y Q Cui , X Q An , H J Liu , J H Qu . (2022). Insight into the key role of Cr intermediates in the efficient and simultaneous degradation of organic contaminants and Cr(VI) reduction via g-C3N4-assisted photocatalysis. Environmental Science & Technology, 56(6): 3552–3563
https://doi.org/10.1021/acs.est.1c08440
48 W H ZhongH W GuanX S MaX H Peng (2010). Compensatory fuzzy neural network modeling in a wastewater treatment process. In: Proceedings of 2010 IEEE International Conference on Intelligent Systems & Knowledge Engineering. Hangzhou: ISKE 2010
49 Q Y Zhu , A Gu , D Li , T M Zhang , L H Xiang , M He . (2021). Online recognition of drainage type based on UV-Vis spectra and derivative neural network algorithm. Frontiers of Environmental Science & Engineering, 15(6): 136
[1] FSE-22136-OF-ZXW_suppl_1 Download
[1] Xiaohua Fu, Qingxing Zheng, Guomin Jiang, Kallol Roy, Lei Huang, Chang Liu, Kun Li, Honglei Chen, Xinyu Song, Jianyu Chen, Zhenxing Wang. Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model[J]. Front. Environ. Sci. Eng., 2023, 17(8): 98-.
[2] Zhaocai Wang, Qingyu Wang, Tunhua Wu. A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM[J]. Front. Environ. Sci. Eng., 2023, 17(7): 88-.
[3] Zhengheng Pu, Jieru Yan, Lei Chen, Zhirong Li, Wenchong Tian, Tao Tao, Kunlun Xin. A hybrid Wavelet-CNN-LSTM deep learning model for short-term urban water demand forecasting[J]. Front. Environ. Sci. Eng., 2023, 17(2): 22-.
[4] Xuehong Zhang, Yuanyuan Zhang, Dan Zhu, Zhiyi Lin, Na Sun, Chang Su, Hua Lin, Junjian Zheng. Chromium phytoextraction and physiological responses of the hyperaccumulator Leersia hexandra Swartz to plant growth-promoting rhizobacterium inoculation[J]. Front. Environ. Sci. Eng., 2023, 17(1): 9-.
[5] Xiaoxiao Yin, Junyu Tao, Guanyi Chen, Xilei Yao, Pengpeng Luan, Zhanjun Cheng, Ning Li, Zhongyue Zhou, Beibei Yan. Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric and artificial neural networks[J]. Front. Environ. Sci. Eng., 2023, 17(1): 6-.
[6] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[7] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[8] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[9] Qiyun Zhu, April Gu, Dan Li, Tianmu Zhang, Lunhong Xiang, Miao He. Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm[J]. Front. Environ. Sci. Eng., 2021, 15(6): 136-.
[10] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[11] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[12] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[13] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[14] Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Front. Environ. Sci. Eng., 2020, 14(4): 68-.
[15] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed