Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (3) : 391-401    https://doi.org/10.1007/s11783-011-0355-x
RESEARCH ARTICLE
Single particle analysis of ambient aerosols in Shanghai during the World Exposition, 2010: two case studies
Shikang TAO1, Xinning WANG1, Hong CHEN1, Xin YANG1,2(), Mei LI3, Lei LI3, Zhen ZHOU3
1. Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; 2. Research Institute for Changing Global Environment, Fudan University, Shanghai 200433, China; 3. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
 Download: PDF(733 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A TSI Model 3800 aerosol time-of-flight mass spectrometer (ATOFMS) was deployed for single-particle analysis in Shanghai during the World Exposition (EXPO), 2010. Measurements on two extreme cases: polluted day (1st May) and clean day (25th September) were compared to show how meteorological conditions affected the concentration and composition of ambient aerosols. Mass spectra of 90496 and 50407 particles were analyzed respectively during the two sampling periods. The ART-2a neural network algorithm was applied to sort the collected particles. Seven major classes of particles were obtained: dust, sea salt, industrial, biomass burning, organic carbon (OC), elementary carbon (EC), and NH4-rich particles. Number concentration of ambient aerosols showed a strong anti-correlation with the boundary layer height variation. The external mixing states of aerosols were quite different during two sampling periods because of different air parcel trajectories. Number fraction of biomass burning particles (43.3%) during polluted episode was much higher than that (21.6%) of clean time. Air parcels from the East China Sea on clean day diluted local pollutant concentration and increased the portion of sea salt particle dramatically (13.3%). The large contribution of biomass burning particles in both cases might be an indication of a constant regional background of biomass burning emission. Mass spectrum analysis showed that chemical compositions and internal mixing states of almost all the particle types were more complicate during polluted episode compared with those observed in clean time. Strong nitrate signals in the mass spectra suggested that most of the particles collected on polluted day had gone through some aging processes before reaching the sampling site.

Keywords ambient aerosol      aerosol time-of-flight mass spectrometer      Shanghai      world exposition     
Corresponding Author(s): YANG Xin,Email:yangxin@fudan.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Xinning WANG,Hong CHEN,Xin YANG, et al. Single particle analysis of ambient aerosols in Shanghai during the World Exposition, 2010: two case studies[J]. Front Envir Sci Eng Chin, 2011, 5(3): 391-401.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0355-x
https://academic.hep.com.cn/fese/EN/Y2011/V5/I3/391
Fig.1  Hourly averaged temperature and relative humidity during two sampling periods: (a) 30th April to 1st May; (b) 25th September (http://www.wunderground.com)
Fig.2  24 h back trajectories of air parcels arriving at sampling site on 1st May (a) and 25th September 2010 (b) (http://www.arl.noaa.gov)
Fig.3  Hourly averaged boundary layer height during two sampling periods: (a) 18:00 30th April–20:00 1st May; (b) 8:00-22:00 25th September (http://www.arl.noaa.gov)
Fig.4  Air pollution index (API) on 1st May 2010 and 25th September 2010 released by Shanghai Environmental Protection Bureau (http://www.envir.gov.cn)
particle type1st May25th September
counts%counts%
dust54896.123594.7
sea salt19392.1669813.3
biomass3922043.31088821.6
industrial3649416033.2
OC76408.4914218.1
EC1078611.9560711.1
NH4-rich2743310722.1
others19030211303825.9
total9049610050407100
Tab.1  Number fraction of each classified particle type on 1st May and 25th September, 2010
Fig.5  Hourly resolved number fractions of major particle types during two sampling periods: (a) 18:00 30th April–20:00 1st May; (b) 8:00-22:00 25th September
Fig.6  Size resolved number fractions of major particle types on 1st May (a) and 25th September (b)
Fig.7  Size segregated chemical composition of detected ambient aerosols on 1st May (a) and 25th September (b)
Fig.8  Averaged mass spectra of the major particle types on 1st May
Fig.9  Averaged mass spectra of the major particle types on 25th September
1 Dockery D W, Pope C A, Xu X P, Spengler J D, Ware J H, Fay M E, Ferris B G Jr, Speizer F E. An association between air pollution and mortality in six U.S. cities. The New England Journal of Medicine , 1993, 329(24): 1753–1759
doi: 10.1056/NEJM199312093292401 pmid:8179653
2 Carmichael G R, Adhikary B, Kulkarni S, D’Allura A, Tang Y, Streets D, Zhang Q, Bond T C, Ramanathan V, Jamroensan A, Marrapu P. Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change. Environmental Science & Technology , 2009, 43(15): 5811–5817
doi: 10.1021/es8036803 pmid:19731681
3 Schnelle-Kreis J, Küpper U, Sklorz M, Cyrys J, Briedé J J, Peters A, Zimmermann R.Daily measurement of organic compounds in ambient particulate matter in Augsburg, Germany: new aspects on aerosol sources and aerosol related health effects. Biomarkers , 2009, 14(Suppl 1): 39–44
doi: 10.1080/13547500902965997 pmid:19604057
4 Vedal S, Hannigan M P, Dutton S J, Miller S L, Milford J B, Rabinovitch N, Kim S Y, Sheppard L. The Denver aerosol sources and health (DASH) study: overview and early findings. Atmospheric Environment , 2009, 43(9): 1666–1673
doi: 10.1016/j.atmosenv.2008.12.017
5 Wang Y, Zhuang G, Tang A, Zhang W, Sun Y, Wang Z, An Z. The evolution of chemical components of aerosols at five monitoring sites of China during dust storms. Atmospheric Environment , 2007, 41(5): 1091–1106
doi: 10.1016/j.atmosenv.2006.09.015
6 Huang K, Zhuang G, Li J, Wang Q, Sun Y, Lin Y, Fu J.Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. Journal of Geophysical Research-Atmospheres , 2010, 115(21):D00K13
doi: 10.1029/2009JD013145
7 Chan C K, Yao X. Air pollution in mega cities in China. Atmospheric Environment , 2008, 42(1): 1–42
doi: 10.1016/j.atmosenv.2007.09.003
8 Sullivan R C, Prather K A. Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation. Analytical Chemistry , 2005, 77(12): 3861–3886
doi: 10.1021/ac050716i pmid:15952760
9 Nash D G, Baer T, Johnston M V. Aerosol mass spectrometry: an introductory review. International Journal of Mass Spectrometry , 2006, 258(1-3): 2–12
doi: 10.1016/j.ijms.2006.09.017
10 Yang F, Wang X, Zhang Y, Wang X, Chen H, Yang X, Chen J. Real-time, single-particle measurements of ambient aerosols in Shanghai. Frontiers of Chemistry in China , 2010, 5(3): 331–341
doi: 10.1007/s11458-010-0004-0
11 Yang F, Chen H, Wang X, Yang X, Du J, Chen J. Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: Mixing state and formation mechanism. Atmospheric Environment , 2009, 43(25): 3876–3882
doi: 10.1016/j.atmosenv.2009.05.002
12 Wang X, Zhang Y, Chen H, Yang X, Chen J, Geng F. Particulate nitrate formation in a highly polluted urban area: a case study by single-particle mass spectrometry in Shanghai. Environmental Science & Technology , 2009, 43(9): 3061–3066
doi: 10.1021/es8020155 pmid:19534114
13 Wang X, Gao S, Yang X, Chen H, Chen J, Zhuang G, Surratt J D, Chan M N, Seinfeld J H. Evidence for high molecular weight nitrogen-containing organic salts in urban aerosols. Environmental Science & Technology , 2010, 44(12): 4441–4446
doi: 10.1021/es1001117 pmid:20476743
14 Prather K A, Nordmeyer T, Salt K. Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry. Analytical Chemistry , 1994, 66(9): 1403–1407
doi: 10.1021/ac00081a007
15 Bhave P V, Fergenson D P, Prather K A, Cass G R. Source apportionment of fine particulate matter by clustering single-particle data: tests of receptor model accuracy. Environmental Science & Technology , 2001, 35(10): 2060–2072
doi: 10.1021/es0017413 pmid:11393988
16 Rebotier T P, Prather K A. Aerosol time-of-flight mass spectrometry data analysis: a benchmark of clustering algorithms. Analytica Chimica Acta , 2007, 585(1): 38–54
doi: 10.1016/j.aca.2006.12.009 pmid:17386645
17 Liu D Y, Wenzel R J, Prather K A. Aerosol time-of-flight mass spectrometry during the Atlanta Supersite Experiment: 1. Measurements. Journal of Geophysical Research-Atmospheres , 2003, 108(D7):8426
doi: 10.1029/2001JD001562 pmid:14686320
18 Bhave P V, Allen J O, Morrical B D, Fergenson D P, Cass G R, Prather K A. A field-based approach for deterimining ATOFMS instrument sensitities to ammonium and nitrate. Environmental Science & Technology , 2002, 36(22): 4868–4879
doi: 10.1021/es015823i pmid:12487311
19 Pratt K A, Prather K A. Aircraft measurements of vertical profiles of aerosol mixing states. Journal of Geophysical Research , 2010, 115(D11): D11305
doi: 10.1029/2009JD013150
20 Finlayson-Pitts B J, Pitts J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. San Diego , CA: Academic Press, 2000, 355
21 Shields L G. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California. Dissertation for the Doctoral Degree , San Diego: University of California, San Diego, 2008
22 Lee S H, Murphy D M, Thomson D S, Middlebrook A M. Nitrate and oxidized organic ions in single particle mass spectra during the 1999 Atlanta Supersite Project. Journal of Geophysical Research , 2003, 108(D7): 8417
doi: 10.1029/2001JD001455
23 Sullivan R C, Prather K A. Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow. Environmental Science & Technology , 2007, 41(23): 8062–8069
doi: 10.1021/es071134g pmid:18186338
24 Moffet R C, de Foy B, Molina L T, Molina M J, Prather K A. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry. Atmospheric Chemistry and Physics , 2008, 8(16): 4499–4516
doi: 10.5194/acp-8-4499-2008
25 Geagea M L, Stille P, Gauthier-Lafaye F, Millet M. Tracing of industrial aerosol sources in an urban environment using Pb, Sr, and Nd isotopes. Environmental Science & Technology , 2008, 42(3): 692–698
doi: 10.1021/es071704c pmid:18323089
26 Zhang H, He P J, Shao L M. Flow analysis of heavy metals in MSW incinerators for investigating contamination of hazardous components. Environmental Science & Technology , 2008, 42(16): 6211–6217
doi: 10.1021/es800548w pmid:18767689
27 Silva P J, Prather K A. Interpretation of mass spectra from organic compounds in aerosol time-of-flight mass spectrometry. Analytical Chemistry , 2000, 72(15): 3553–3562
doi: 10.1021/ac9910132 pmid:10952542
28 Spencer M T, Prather K A. Using ATOFMS to determine OC/EC mass fractions in particles. Aerosol Science and Technology , 2006, 40(8): 585–594
doi: 10.1080/02786820600729138
29 Toner S M. Anthropogenic particulate source characterization and source apportionment using aerosol time-of-flight mass spectrometry. Dissertation for the Doctoral Degree , San Diego: University of California, San Diego, 2007: 1-3,139
30 Dall’Osto M, Harrison R M. Chemical characterisation of single airborne particles in Athens (Greece) by ATOFMS. Atmospheric Environment , 2006, 40(39): 7614–7631
doi: 10.1016/j.atmosenv.2006.06.053 pmid:18458748
31 Arens F, Gutzwiller L, Baltensperger U, G?ggeler H W, Ammann M. Heterogeneous reaction of NO2 on diesel soot particles. Environmental Science & Technology , 2001, 35(11): 2191–2199
doi: 10.1021/es000207s pmid:11414018
32 Hughey C A, Hendrickson C L, Rodgers R P, Marshall A G. Elemental composition analysis of processed and unprocessed diesel fuel by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels , 2001, 15(5): 1186–1193
doi: 10.1021/ef010028b
33 Chaloulakou A, Kassomenos P, Grivas G, Spyrellis N. Particulate matter and black smoke concentration levels in central Athens, Greece. Environment International , 2005, 31(5): 651–659
doi: 10.1016/j.envint.2004.11.001 pmid:15910961
34 Martínez C E, Jacobson A R, McBride M B. Lead phosphate minerals: solubility and dissolution by model and natural ligands. Environmental Science & Technology , 2004, 38(21): 5584–5590
doi: 10.1021/es049617x pmid:15575275
35 Zhang Y, Wang X, Chen H, Yang X, Chen J, Allen J O. Source apportionment of lead-containing aerosol particles in Shanghai using single particle mass spectrometry. Chemosphere , 2009, 74(4): 501–507
doi: 10.1016/j.chemosphere.2008.10.004 pmid:19027137
[1] Caihong Xu, Jianmin Chen, Zhikai Wang, Hui Chen, Hao Feng, Lujun Wang, Yuning Xie, Zhenzhen Wang, Xingnan Ye, Haidong Kan, Zhuohui Zhao, Abdelwahid Mellouki. Diverse bacterial populations of PM2.5 in urban and suburb Shanghai, China[J]. Front. Environ. Sci. Eng., 2021, 15(3): 37-.
[2] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[3] Chaoyang DU,Jingjie YU,Huaping ZHONG,Dandan WANG. Operating mechanism and set pair analysis model of a sustainable water resources system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 288-297.
[4] WANG Xiangrong, YONG Yi, ZHANG Hao, WANG Pingjian, WANG Shoubing, CHEN Weizhen, WANG Shixiong, HO Hing Hon. On eco-planning for an eco-demonstration park (EDP) and sustainability[J]. Front.Environ.Sci.Eng., 2008, 2(2): 178-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed