Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (12) : 150    https://doi.org/10.1007/s11783-022-1585-9
RESEARCH ARTICLE
Characteristics of typical dissolved black carbons and their influence on the formation of disinfection by-products in chlor(am)ination
Jinhui Liang, Peng Gao, Benhang Li, Longfei Kang, Li Feng, Qi Han, Yongze Liu, Liqiu Zhang()
Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
 Download: PDF(15474 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The physicochemical and structural properties of DBC were characterized.

● The effects of DBC on DBPs and DBPFP generation during disinfection were evaluated.

● The DBPs and DBPFP generation during chlor(am)ination were compared.

Dissolved black carbon (DBC) released from biochar can be one of the potential disinfection by-products (DBPs) precursors in the dissolved organic matter pool. However, the physiochemical and structural properties of DBC and the effects on the development of DBPs and DBP formation potential (DBPFP) during the disinfection process remain unclear. In this study, the characteristics of two kinds of DBC, namely, animal-derived DBC (poultry litter DBC, PL-DBC) and plant-derived DBC (wheat straw DBC, WS-DBC), were investigated. The effects of different kinds of DBC on the evolution of DBPs and DBPFP in chlorine and chloramine disinfection processes were compared with natural organic matter (NOM). The results showed that the total DBPs concentrations derived from PL-DBC, WS-DBC and NOM were similar during chlorination (i.e., 61.23 μg/L, 64.59 μg/L and 64.66 μg/L, respectively) and chloramination (i.e., 44.63 μg/L, 44.42 μg/L and 45.58 μg/L, respectively). The lower total DBPs and DBPFP concentrations in chloramination could be attributed to the fact that the introduction of ammonia in chloramine inhibited the breaking of the bond between the disinfectant and the active group of the precursor. Additionally, DBC presented much lower total DBPFP concentrations than NOM in both chlorination and chloramination. However, both kinds of DBC tended to form more monochloroacetic acids and haloacetamides than NOM, which could result from the higher organic strength, higher protein matter, and nitrogen-rich soluble microbial products of DBC.

Keywords Dissolved black carbon (DBC)      Chlorine      Chloramine      Disinfection by-products (DBPs)      Disinfection by-products formation potential (DBPFP)     
Corresponding Author(s): Liqiu Zhang   
Issue Date: 09 June 2022
 Cite this article:   
Jinhui Liang,Peng Gao,Benhang Li, et al. Characteristics of typical dissolved black carbons and their influence on the formation of disinfection by-products in chlor(am)ination[J]. Front. Environ. Sci. Eng., 2022, 16(12): 150.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1585-9
https://academic.hep.com.cn/fese/EN/Y2022/V16/I12/150
Fig.1  The H/C and O/C of (a) WS-DBC and (b) PL-DBC.
Precursor species DOC/DON SUVA254(L/mg/m) UV465/UV656 fi(Ex,Em)=(240–410,440–550 nm) fi(Ex,Em)=(240–410,364–440 nm) UV253/UV203
WS-DBC 9.26 6.1 4 0.41 0.42 0.51
PL-DBC 11.36 1.9 2.5 0.40 0.41 0.32
NOM 5.87 3.55 1.5 0.58 0.33 0.56
Tab.1  Specific parameters of WS-DBC, PL-DBC and NOM
Fig.2  3D-EEM of WS-DBC (a), PL-DBC (b) and NOM (c).
Precursor species Region I Region II Region III Region IV Region V
WS-DBC 1549.026 55322.13 307109.3 579459.6 2925807
PL-DBC 31032.61 476147 1848776 1812928 7506284
NOM 2500.677 20121.45 241346.4 95873.21 1758665
Tab.2  Average fluorescence intensities of WS-DBC, PL-DBC and NOM
Fig.3  Concentrations of DBPs and DBPFP in the presence of WS-DBC, PL-DBC and NOM during the chlorine disinfection process: (a) WS-DBC; (b) PL-DBC; (c) NOM; (d) DBPFP.
Fig.4  Concentrations of DBPs and DBPFP in the presence of WS-DBC, PL-DBC and NOM during the chlorine disinfection process: (a) Total DBPs; (b) TCM; (c) HAAs; (d) HANs; (e) HAcAms
Fig.5  Concentrations of DBPs and DBPFP in the presence of WS-DBC, PL-DBC and NOM during the chloramine disinfection process: (a) WS-DBC; (b) PL-DBC; (c) NOM; (d) DBPFP.
Fig.6  Concentrations of DBPs and DBPFP in the presence of WS-DBC, PL-DBC and NOM during chloramine disinfection: (a) Total DBPs; (b) TCM; (c) HAAs; (d) HANs; (e) HAcAms.
Fig.7  Concentrations of total DBPs and DBPFP in the presence of WS-DBC, PL-DBC and NOM during the chlorine and chloramine disinfection processes.
Fig.8  Concentrations of DBPs and DBPFP in the presence of WS-DBC, PL-DBC and NOM during the chlorine and chloramine disinfection processes: (a) DBPs; (b) DBPFP.
1 K Alfredo . (2021). The “Burn”: Water quality and microbiological impacts related to limited free chlorine disinfection periods in a chloramine system. Water Research, 197 : 117044
https://doi.org/10.1016/j.watres.2021.117044
2 S E Cabaniss , Q Zhou , P A Maurice , Y P Chin , G R Aiken . (2000). A Log-normal distribution model for the molecular weight of aquatic fulvic acids. Environmental Science & Technology, 34( 6): 1103– 1109
https://doi.org/10.1021/es990555y
3 W Chen , P Westerhoff , J A Leenheer , K Booksh . (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37( 24): 5701– 5710
https://doi.org/10.1021/es034354c
4 A T Chow , R A Dahlgren , Q Zhang , P K Wong . (2008). Relationships between specific ultraviolet absorbance and trihalomethane precursors of different carbon sources. Journal of Water Supply: Research & Technology - Aqua, 57( 7): 471– 480
https://doi.org/10.2166/aqua.2008.064
5 W Chu , X Li , T Bond , N Gao , D Yin . (2015). The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination. Chemical Engineering Journal, 285( 1): 164– 171
6 W H Chu , N Y Gao , Y Deng , S W Krasner . (2010). Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination. Environmental Science & Technology, 44( 10): 3908– 3912
https://doi.org/10.1021/es100397x
7 Y H Chuang , A Y Lin , X H Wang , H H Tung . (2013). The contribution of dissolved organic nitrogen and chloramines to nitrogenous disinfection byproduct formation from natural organic matter. Water Research, 47( 3): 1308– 1316
https://doi.org/10.1016/j.watres.2012.11.046
8 Y Ding , K M Cawley , C N Da Cunha , R Jaffe . (2014). Environmental dynamics of dissolved black carbon in wetlands. Biogeochemistry, 119( 1−3): 259– 273
https://doi.org/10.1007/s10533-014-9964-3
9 H Dong H Zhang Y Wang Z Qiang M Yang ( 2021). Disinfection by-product (DBP) research in China: Are we on the track? Journal of Environmental Sciences-China, 110( 7): 99– 110
pmid: 34593199" target="_blank">34593199
10 Z Du , Y He , J Fan , H Fu , S Zheng , Z Xu , X Qu , A Kong , D Zhu . (2018). Predicting apparent singlet oxygen quantum yields of dissolved black carbon and humic substances using spectroscopic indices. Chemosphere, 194 : 405– 413
https://doi.org/10.1016/j.chemosphere.2017.11.172
11 Z Fan , H Yang , S Li , X Yu . (2020). Tracking and analysis of DBP precursors’ properties by fluorescence spectrometry of dissolved organic matter. Chemosphere, 239 : 124790
https://doi.org/10.1016/j.chemosphere.2019.124790
12 W C Hockaday , A M Grannas , S Kim , P G Hatcher . (2006). Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Organic Geochemistry, 37( 4): 501– 510
https://doi.org/10.1016/j.orggeochem.2005.11.003
13 W C Hockaday , A M Grannas , S Kim , P G Hatcher . (2007). The transformation and mobility of charcoal in a fire-impacted watershed. Geochimica et Cosmochimica Acta, 71( 14): 3432– 3445
https://doi.org/10.1016/j.gca.2007.02.023
14 H Hong , Y Xiong , M Ruan , F Liao , H Lin , Y Liang . (2013). Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine. Science of the Total Environment, 444( 1): 196– 204
https://doi.org/10.1016/j.scitotenv.2012.11.086
15 J Hu , H Song , J W Addison , T Karanfil . (2010). Halonitromethane formation potentials in drinking waters. Water Research, 44( 1): 105– 114
https://doi.org/10.1016/j.watres.2009.09.006
16 Y Hu , Y Qian , Y Chen , J Guo , J Song , D An . (2021). Characteristics of trihalomethane and haloacetic acid precursors in filter backwash and sedimentation sludge waters during drinking water treatment. Science of the Total Environment, 775( 25): 145952
https://doi.org/10.1016/j.scitotenv.2021.145952
17 G Hua , J Kim , D A Reckhow . (2014). Disinfection byproduct formation from lignin precursors. Water Research, 63( 63C): 285– 295
https://doi.org/10.1016/j.watres.2014.06.029
18 G Hua , D A Reckhow , I Abusallout . (2015). Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources. Chemosphere, 130 : 82– 89
https://doi.org/10.1016/j.chemosphere.2015.03.039
19 L C Hua , J L Lin , P C Chen , C Huang . (2017). Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts. Chemical Engineering Journal, 328( 15): 1022– 1030
https://doi.org/10.1016/j.cej.2017.07.123
20 R Jaffé , Y Ding , J Niggemann , A V Vähätalo , A Stubbins , R G Spencer , J Campbell , T Dittmar . (2013). Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science, 340( 6130): 345– 347
https://doi.org/10.1126/science.1231476
21 P Jutaporn , W Laolertworakul , K Tungsudjawong , W Khongnakorn , S Leungprasert . (2021). Parallel factor analysis of fluorescence excitation emissions to identify seasonal and watershed differences in trihalomethane precursors. Chemosphere, 282 : 131061
https://doi.org/10.1016/j.chemosphere.2021.131061
22 J Kaal , S Wagner , R Jaffé . (2016). Molecular properties of ultrafiltered dissolved organic matter and dissolved black carbon in headwater streams as determined by pyrolysis-GC–MS. Journal of Analytical and Applied Pyrolysis, 118 : 181– 191
https://doi.org/10.1016/j.jaap.2016.02.003
23 S Kali , M Khan , M S Ghaffar , S Rasheed , A Waseem , M M Iqbal , M Bilal Khan Niazi , M I Zafar . (2021). Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. Environmental Pollution, 281( 1): 116950
https://doi.org/10.1016/j.envpol.2021.116950
24 V Kanokkantapong T F Marhaba S Wattanachira B Panyapinyophol P Pavasant ( 2006). Interaction between organic species in the formation of haloacetic acids following disinfection. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 41( 6): 1233– 1248
pmid: 16760098
25 S Kim , L A Kaplan , R Benner , P G Hatcher . (2004). Hydrogen-deficient molecules in natural riverine water samples—evidence for the existence of black carbon in DOM. Marine Chemistry, 92( 1−4): 225– 234
https://doi.org/10.1016/j.marchem.2004.06.042
26 H Knicker . (2007). How does fire affect the nature and stability of soil organic nitrogen and carbon? A review.. Biogeochemistry, 85( 1): 91– 118
https://doi.org/10.1007/s10533-007-9104-4
27 H Knicker . (2011). Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quaternary International, 243( 2): 251– 263
https://doi.org/10.1016/j.quaint.2011.02.037
28 Roux J Le , M Nihemaiti , J P Croué . (2016). The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter. Water Research, 88 : 371– 379
https://doi.org/10.1016/j.watres.2015.10.036
29 A Li , X Zhao , R Mao , H Liu , J Qu . (2014). Characterization of dissolved organic matter from surface waters with low to high dissolved organic carbon and the related disinfection byproduct formation potential. Journal of Hazardous Materials, 271( 1): 228– 235
https://doi.org/10.1016/j.jhazmat.2014.02.009
30 C Li D Wang X Xu Z Wang ( 2017). Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation. Science of the Total Environment, 587–588( 1): 177– 184
pmid: 28238434
31 Z Liu , B Xu , Y L Lin , T Y Zhang , T Ye , C Y Hu , Y S Lu , T C Cao , Y L Tang , N Y Gao . (2020). Mechanistic study on chlorine/nitrogen transformation and disinfection by-product generation in a UV-activated mixed chlorine/chloramines system. Water Research, 184 : 116116
https://doi.org/10.1016/j.watres.2020.116116
32 J Lu , T Zhang , J Ma , Z Chen . (2009). Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. Journal of Hazardous Materials, 162( 1): 140– 145
https://doi.org/10.1016/j.jhazmat.2008.05.058
33 Y C Luo , L Feng , Y Z Liu , L Q Zhang . (2020). Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Separation and Purification Technology, 238( 1): 116405
https://doi.org/10.1016/j.seppur.2019.116405
34 A Maheshwari , A Abokifa , R D Gudi , P Biswas . (2020). Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks. Journal of Environmental Management, 276( 15): 111186
https://doi.org/10.1016/j.jenvman.2020.111186
35 H Majidzadeh , H Chen , T A Coates , K P Tsai , C I Olivares . (2019). Long-term watershed management is an effective strategy to reduce organic matter export and disinfection by-product precursors in source water. International Journal of Wildland Fire, 28( 10): 804– 813
https://doi.org/10.1071/WF18174
36 H Majidzadeh , J J Wang , A T Chow . (2015). Prescribed fire alters dissolved organic matter and disinfection by-product precursors in forested watersheds - Part I. A controlled laboratory study. ACS Symposium Series, 1190 : 271– 292
https://doi.org/10.1021/bk-2015-1190.ch015
37 S Malghani , G Gleixner , S E Trumbore . (2013). Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biology & Biochemistry, 62 : 137– 146
https://doi.org/10.1016/j.soilbio.2013.03.013
38 S S Marais , E J Ncube , T Msagati , B B Mamba , T Nkambule . (2019). Assessment of trihalomethane (THM) precursors using specific ultraviolet absorbance (SUVA) and molecular size distribution (MSD). Journal of Water Process Engineering, 27 : 143– 151
https://doi.org/10.1016/j.jwpe.2018.11.019
39 C A Masiello . (2004). New directions in black carbon organic geochemistry. Marine Chemistry, 92( 1-4): 201– 213
https://doi.org/10.1016/j.marchem.2004.06.043
40 R Mompremier , Mariles Ó A Fuentes , Bravo J E Becerril , K Ghebremichael . (2019). Study of the variation of haloacetic acids in a simulated water distribution network. Water Science and Technology: Water Supply, 19( 1): 88– 96
https://doi.org/10.2166/ws.2018.055
41 P M Ndegwa . (2004). Solids separation enhances reduction of organic strength of swine manure subjected to aeration treatments. Transactions of the ASAE. American Society of Agricultural Engineers, 47( 5): 1659– 1666
https://doi.org/10.13031/2013.17608
42 T Polubesova , B Chefetz . (2014). DOM-affected transformation of contaminants on mineral surfaces: A review. Critical Reviews in Environmental Science and Technology, 44( 3): 223– 254
https://doi.org/10.1080/10643389.2012.710455
43 C M Potvin , H Zhou . (2011). Interference by the activated sludge matrix on the analysis of soluble microbial products in wastewater. Chemosphere, 85( 7): 1139– 1145
https://doi.org/10.1016/j.chemosphere.2011.07.057
44 X Qu , H Fu , J Mao , Y Ran , D Zhang , D Zhu . (2016). Chemical and structural properties of dissolved black carbon released from biochars. Carbon, 96 : 759– 767
https://doi.org/10.1016/j.carbon.2015.09.106
45 C Sfynia , T Bond , R Kanda , M R Templeton . (2020). The formation of disinfection by-products from the chlorination and chloramination of amides. Chemosphere, 248 : 125940
https://doi.org/10.1016/j.chemosphere.2020.125940
46 Y Shi , S Li , L Wang , J Li , G Shen , G Wu , K Xu , H Ren , J Geng . (2020). Characteristics of DOM in 14 AAO processes of municipal wastewater treatment plants. Science of the Total Environment, 742 : 140654
https://doi.org/10.1016/j.scitotenv.2020.140654
47 S P Sohi , E Krull , E Lopez-Capel , R Bol . (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105( 1): 47– 82
https://doi.org/10.1016/S0065-2113(10)05002-9
48 C Thomas , A J Kuhlbusch . (1998). Enhanced: black carbon and the carbon. Science, 280( 19): 1903– 1904
49 C Tian , R Liu , H Liu , J Qu . (2013). Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: significance of ammonia. Water Research, 47( 15): 5901– 5910
https://doi.org/10.1016/j.watres.2013.07.013
50 K P Tsai , M F Rogers , A T Chow , A Diaz . (2015). Prescribed fire alters dissolved organic matter and disinfection by-product precursor in forested watersheds – Part II. A controlled field study. ACS Symposium Series, 1190 : 293– 306
https://doi.org/10.1021/bk-2015-1190.ch016
51 H Uzun , W Zhang , C I Olivares , C U Erdem , T A Coates , T Karanfil , A T Chow . (2020). Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability. Water Research, 187( 1): 116385
https://doi.org/10.1016/j.watres.2020.116385
52 S Wagner , R Jaffé , A Stubbins . (2018). Dissolved black carbon in aquatic ecosystems. Limnology and Oceanography Letters, 3( 3): 168– 185
https://doi.org/10.1002/lol2.10076
53 J J Wang , R A Dahlgren , M S Erşan , T Karanfil , A T Chow . (2015). Wildfire altering terrestrial precursors of disinfection byproducts in forest detritus. Environmental Science & Technology, 49( 10): 5921– 5929
https://doi.org/10.1021/es505836m
54 J J Wang , T W Ng , Q Zhang , X B Yang , R A Dahlgren , A T Chow , P K Wong . (2012). Technical Note: Reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria. Biogeosciences, 9( 10): 3721– 3727
https://doi.org/10.5194/bg-9-3721-2012
55 C Wei H Fu X Qu D Zhu ( 2017). Environmental processes of dissolved black carbon. Progress in Chemistry, 29( 9): 1042− 1052 (in Chinese)
56 F Xu , C Wei , Q Zeng , X Li , P J J Alvarez , Q Li , X Qu , D Zhu . (2017). Aggregation behavior of dissolved black carbon: Implications for vertical mass flux and fractionation in aquatic systems. Environmental Science & Technology, 51( 23): 13723– 13732
https://doi.org/10.1021/acs.est.7b04232
57 Y Xu , Q Ou , Q He , Z Wu , J Ma , X Huangfu . (2021). Influence of dissolved black carbon on the aggregation and deposition of polystyrene nanoplastics: Comparison with dissolved humic acid. Water Research, 196( 15): 117054
https://doi.org/10.1016/j.watres.2021.117054
58 Y Yamashita , D Kojima , N Yoshida , H Shibata . (2021). Relationships between dissolved black carbon and dissolved organic matter in streams. Chemosphere, 271 : 129824
https://doi.org/10.1016/j.chemosphere.2021.129824
59 B Yang , H Fang , B Chen , S Yang , Z Ye , J Yu . (2021). Effects of reductive inorganics and NOM on the formation of chlorite in the chlorine dioxide disinfection of drinking water. Journal of Environmental Sciences-China, 104 : 225– 232
https://doi.org/10.1016/j.jes.2020.11.033
60 X Yang , C Fan , C Shang , Q Zhao . (2010). Nitrogenous disinfection byproducts formation and nitrogen origin exploration during chloramination of nitrogenous organic compounds. Water Research, 44( 9): 2691– 2702
https://doi.org/10.1016/j.watres.2010.01.029
61 X Yang , C Shang , W Lee , P Westerhoff , C Fan . (2008). Correlations between organic matter properties and DBP formation during chloramination. Water Research, 42( 8−9): 2329– 2339
https://doi.org/10.1016/j.watres.2007.12.021
62 H Zhang , Y Zhang , Q Shi , J Hu , M Chu , J Yu , M Yang . (2012). Study on transformation of natural organic matter in source water during chlorination and its chlorinated products using ultrahigh resolution mass spectrometry. Environmental Science & Technology, 46( 8): 4396– 4402
https://doi.org/10.1021/es203587q
63 Q Zhang , W F Kuang , L Y Liu , K Li , K H Wong , A T Chow , P K Wong . (2009). Trihalomethane, haloacetonitrile, and chloral hydrate formation potentials of organic carbon fractions from sub-tropical forest soils. Journal of Hazardous Materials, 172( 2−3): 880– 887
https://doi.org/10.1016/j.jhazmat.2009.07.068
64 S Zhang , T Lin , H Chen , H Xu , W Chen , H Tao . (2020). Precursors of typical nitrogenous disinfection byproducts: Characteristics, removal, and toxicity formation potential. Science of The Total Environment, 742( 10): 140566
https://doi.org/10.1016/j.scitotenv.2020.140566
65 Z L Zhu G E Yuan-Xin M A Hong-Mei J F Zhao ( 2008). Study on characteristics of chlorination reaction of humic acid in different molecular weight ranges. China Water & Wastewater, 24( 19): 101− 105 (in Chinese)
[1] Chengsong Ye, Yuming Chen, Lin Feng, Kun Wan, Jianguo Li, Mingbao Feng, Xin Yu. Effect of the ultraviolet/chlorine process on microbial community structure, typical pathogens, and antibiotic resistance genes in reclaimed water[J]. Front. Environ. Sci. Eng., 2022, 16(8): 100-.
[2] Weiying Li, Yu Tian, Jiping Chen, Xinmin Wang, Yu Zhou, Nuo Shi. Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes[J]. Front. Environ. Sci. Eng., 2022, 16(6): 72-.
[3] He Zhao, Ching-Hua Huang, Chen Zhong, Penghui Du, Peizhe Sun. Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine conditions[J]. Front. Environ. Sci. Eng., 2022, 16(6): 76-.
[4] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[5] Virender K. Sharma, Xin Yu, Thomas J. McDonald, Chetan Jinadatha, Dionysios D. Dionysiou, Mingbao Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 37-.
[6] Alvyn P. Berg, Ting-An Fang, Hao L. Tang. Unlocked disinfection by-product formation potential upon exposure of swimming pool water to additional stimulants[J]. Front. Environ. Sci. Eng., 2019, 13(1): 10-.
[7] Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives[J]. Front. Environ. Sci. Eng., 2016, 10(4): 8-.
[8] Xiaolu ZHANG, Hongwei YANG, Xiaofeng WANG, Yu ZHAO, Xiaomao WANG, Yuefeng XIE. Concentration levels of disinfection by-products in 14 swimming pools of China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 995-1003.
[9] Roberta DYCK, Geneviève COOL, Manuel RODRIGUEZ, Rehan SADIQ. Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small drinking water systems[J]. Front. Environ. Sci. Eng., 2015, 9(1): 171-179.
[10] Mingsong WU, Junli HUANG, Yuling ZHANG, Shijie YOU, Shaofeng LI, Zhilin RAN, Yu TIAN. Characterization of chlorine dioxide as disinfectant for the removal of low concentration microcystins[J]. Front Envir Sci Eng, 2012, 6(1): 75-81.
[11] Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI. Impact of total organic carbon and chlorine to ammonia ratio on nitrification in a bench-scale drinking water distribution system[J]. Front Envir Sci Eng Chin, 2010, 4(4): 430-437.
[12] Wenjun LIU, Shaoying QI, . Modeling and verifying chlorine decay and chloroacetic acid formation in drinking water chlorination[J]. Front.Environ.Sci.Eng., 2010, 4(1): 65-72.
[13] WANG Lisha, HU Hongying, WANG Chao, Koichi Fujie. Change in genotoxicity of wastewater during chlorine dioxide and chlorine disinfections and the influence of ammonia nitrogen[J]. Front.Environ.Sci.Eng., 2007, 1(1): 18-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed