Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol Chin    2009, Vol. 4 Issue (2) : 137-142    https://doi.org/10.1007/s11515-009-0005-x
REVIEW
Identification, regulation and physiological functions of multiple NADPH dehydrogenase complexes in cyanobacteria
Weimin MA(email.png)
College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
 Download: PDF(134 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cyanobacteria possess multiple, functionally distinct NADPH dehydrogenase (NDH-1) complexes. In this mini-review, we describe the cyanobacterial NDH-1 complexes by focusing on their identification, regulatory properties, and multiple functions. The multiple functions can be divided into basic and extending functions, and the basic functions are compared with those in chloroplasts. Many questions related to cyanobacterial NDH-1 complexes remain unanswered and are briefly summarized here.

Keywords cell respiration      CO2 uptake      cyanobacteria      cyclic electron transport around photosystem I      NADPH dehydrogenase complexes     
Corresponding Author(s): MA Weimin,Email:cyanoma@hotmail.com   
Issue Date: 05 June 2009
 Cite this article:   
Weimin MA. Identification, regulation and physiological functions of multiple NADPH dehydrogenase complexes in cyanobacteria[J]. Front Biol Chin, 2009, 4(2): 137-142.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-009-0005-x
https://academic.hep.com.cn/fib/EN/Y2009/V4/I2/137
Fig.1  A hypothetical scheme for the active NDH-1 supercomplex (Act-NDH-1Sup) in the cyanobacterium 6803. Act-NDH-1Sup is a highly active NDH-1 supercomplex, but the active domain in (NuoE, F and G, indicated by question marks) is missing from the cyanobacterial NDH-1 supercomplex. TM: thylakoid membrane.
basic functionscyanobacterial NDH-1 complexeschloroplastic NDH-1 complexes
CO2 uptakeyesno
cyclic PSIhighlow
respirationhighlow
Tab.1  Comparison of basic functions mediated by cyanobacterial NDH-1 complexes and chloroplast NDH-1 complexes
1 Arteni A A, Zhang P, Battchikova N, Ogawa T, Aro E M, Boekema E J (2006). Structural characterization of NDH-1 complexes of Thermosynechococcus elongatus by single particle electron microscopy. Biochimica et Biophysica Acta , 1757: 1469-1475
doi: 10.1016/j.bbabio.2006.05.042
2 Battchikova N, Aro E M (2007). Cyanobacterial NDH-1 complexes: multiplicity in function and subunit composition. Physiologia Plant arum , 131(1): 22-32
doi: 10.1111/j.1399-3054.2007.00929.x
3 Battchikova N, Zhang P, Rudd S, Ogawa T, Aro E M (2005). Identification of NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M complexes of Synechocystis sp. PCC 6803. Journal of Biological Chemistry , 280(4): 2587-2595
doi: 10.1074/jbc.M410914200
4 Bennoun P (1982). Evidence for a respiratory chain in the chloroplast. Proceedings of the National Academy of Sciences , 79: 4352-4356
doi: 10.1073/pnas.79.14.4352
5 Berger S, Ellersiek U, Steinmuller K (1991). Cyanobacteria contain a mitochondrial complex -homologous NADH-dehydrogenase. FEBS Letters , 286(1--2): 129-132
doi: 10.1016/0014-5793(93)81800-F
6 Berger S, Ellersiek U, Kinzelt D, Steinmuller K (1993). Immunopurification of a subcomplex of the NAD(P)H-plastoquinone-oxidoreductase from the cyanobacterium Synechocystissp. PCC6803. FEBS Letters , 326(1-3): 246-250
doi: 10.1016/0014-5793(91)80957-5
7 Braun H P, Zabaleta E (2007). Carbonic anhydratase subunits of the mitochondrial NADH dehydrogenase complex (complex I) in plants. Physiologia Plantarum , 129: 114-122
doi: 10.1111/j.1399-3054.2006.00773.x
8 Burrows P A, Sazanov L A, Svab Z, Maliga P, Nixon P J (1998). Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. The EMBO Journal , 17(4): 868-876
doi: 10.1093/emboj/17.4.868
9 Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999). Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. The Plant Cell , 11(1): 57-68
10 Casano L M, Zapata J M, Martín M, Sabater B (2000). Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. Journal of Biological Chemistry , 275(2): 942-948
doi: 10.1074/jbc.275.2.942
11 Deng Y, Ye J Y, Mi H L, Shen Y G (2003a). Separation of hydrophobic NAD(P)H dehydrogenase subcomplexes from cyanobacterium Synechocystis PCC6803. Acta Biochimica et Biophysica Sinica , 35(8): 723-727 (in Chinese)
doi: 10.1093/pcp/pcg067
12 Deng Y, Ye J, Mi H (2003b). Effects of low CO2 on NAD(P)H dehydrogenase, a mediator of cyclic electron transport around photosystem I in the cyanobacterium Synechocystis PCC6803. Plant and Cell Physiology , 44: 534-540
13 Folea I M, Zhang P, Nowaczyk M M, Ogawa T, Aro E M, Boekema E J (2008). Single particle analysis of thylakoid proteins from Thermosynechococcus elongatus and Synechocystis 6803: localization of the CupA subunit of NDH-1. FEBS Letters , 582(2): 249-254
doi: 10.1016/j.febslet.2007.12.012
14 Friedrich T, Steinmüller K, Weiss H (1995). The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Letters , 367(2): 107-111
doi: 10.1016/S0014-5793(00)01867-6
15 Friedrich T, Scheide D (2000). The respiratory complex I of bacteria, archea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Letters , 479: 1-5
doi: 10.1016/0014-5793(95)00548-N
16 Herranen M, Battchikova N, Zhang P, Graf A, Sirpio S, Paakkarinen V, Aro E M (2004). Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiology , 134: 470-481
doi: 10.1104/pp.103.032326
17 Jo?t T, Cournac L, Peltier G, Havaux M (2002). Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiology , 128(2): 760-769
doi: 10.1104/pp.010775
18 Josse E M, Simkin A J, Gaffé J, Labouré A M, Kuntz M, Carol P (2000). A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiology , 123(4): 1427-1436
doi: 10.1104/pp.123.4.1427
19 Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research , 3(3): 109-136
doi: 10.1093/dnares/3.3.109
20 Kaplan A, Reinhold L (1999). The CO2concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Physiology and Plant Molecular Biology , 50: 539-570
doi: 10.1146/annurev.arplant.50.1.539
21 Ma W, Deng Y, Mi H (2008a). Redox of plastoquinone pool regulates the expression and activity of NADPH dehydrogenase supercomplex in Synechocystissp. Strain PCC 6803. Current Microbiology , 56: 189-193
doi: 10.1007/s00284-007-9056-x
22 Ma W, Deng Y, Ogawa T, Mi H (2006). Active NDH-1 complexes from the cyanobacterium Synechocystissp. strain PCC 6803. Plant and Cell Physiology , 47(10): 1432-1436
doi: 10.1093/pcp/pcl008
23 Ma W, Mi H (2005). Expression and activity of type-1 NAD(P)H dehydrogenase at different growth phases of cyanobacterium, Synechocystis PCC 6803. Physiologia Plantarum , 125: 135-140
doi: 10.1111/j.1399-3054.2005.00555.x
24 Ma W, Mi H (2008b). Effect of exogenous glucose on the expression and activity of NADPH dehydrogenase complexes in the cyanobacteriam Synechocystis sp. strain PCC 6803. Plant Physiology and Biochemistry , 46(8–9): 775–779
doi: 10.1016/j.plaphy.2008.04.019
25 Ma W, Wei L, Wang Q (2008c). Influence of active NDH-1 complexes on the heat-induced changes in photosystems-driven electron transport in the cyanobacterium Synechocystis 6803. Science in China Series C: Life Sciences , 51(12): 1082–1087
doi: 10.1007/s11427-008-0139-0
26 Maeda S, Badger M R, Price G D (2002). Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2hydration in the cyanobacterium Synechococcus, sp. PCC7942. Molecular Microbiology , 43: 425-435
doi: 10.1046/j.1365-2958.2002.02753.x
27 Matsuo M, Endo T, Asada K (1998). Properties of the respiratory NAD(P)H dehydrogenase isolated from the cyanobacterium Synechocystis PCC6803. Plant and Cell Physiology , 39 (3): 263-267
28 Mi H, Endo T, Schreiber U, Asada K (1992a). Donation of electrons from cytosolic components to the intersystem chain in the cyanobacterium Synechococcus sp. PCC 7002 as determined by the reduction of P700+. Plant and Cell Physiology , 33: 1099-1105
29 Mi H, Endo T, Schreiber U, Ogawa T, Asada K (1992b). Electron donation from cyclic and respiratory flows to the photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant and Cell Physiology , 33: 1233-1237
30 Mi H, Endo T, Ogawa T, Asada K (1995). Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology , 36: 661-668
31 Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004). Cyclic electron flow around photosystem I is essential for photosynthesis. Nature (London) , 429: 579-582
doi: 10.1038/nature02598
32 Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002). PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell , 110(3): 361-371
doi: 10.1016/S0092-8674(02)00867-X
33 Nixon P J, Gounaris K, Coomber S A, Hunter C N, Dyer T A, Barber J (1989). psbG is not a photosystem two gene but may be an ndh gene. Journal of Biological Chemistry , 264: 14129-14135
34 Ogawa T (1990). Mutants of Synechocystis PCC 6803 defective in organic carbon transport. Plant Physiology , 94: 760-765
doi: 10.1104/pp.94.2.760
35 Ogawa T (1991a). A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. Proceedings of the National Academy of Sciences , 88: 4275-4279
doi: 10.1073/pnas.88.10.4275
36 Ogawa T (1991b). Cloning and inactivation of a gene essential to inorganic carbon transport of Synechocystis PCC 6803. Plant Physiology , 96: 280-284
doi: 10.1104/pp.96.1.280
37 Ogawa T (1992). Identification and characterization of the ictA/ndhL gene product essential to inorganic carbon transport of Synechocystis PCC 6803. Plant Physiology , 99: 1604-1608
doi: 10.1104/pp.99.4.1604
38 Ogawa T, Kaplan A (2003). Inorganic carbon acquisition systems in cyanobacteria. Photosynthesis Research , 77(2--3): 105-115
doi: 10.1023/A:1025865500026
39 Ogawa T, Mi H (2007). Cyanobacterial NADPH dehydrogenase complexes. Photosynthesis Research , 93: 69-77
doi: 10.1007/s11120-006-9128-y
40 Ohkawa H, Pakrasi H B, Ogawa T (2000). Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. Journal of Biological Chemistry , 275(41): 31630-31634
doi: 10.1074/jbc.M003706200
41 Ohkawa H, Sonoda M, Shibata M, Ogawa T (2001). Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. The Journal of Bacteriology , 183(16): 4938-4939
doi: 10.1128/JB.183.16.4938-4939.2001
42 Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986). Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature , 322: 572-574
doi: 10.1038/322572a0
43 Peltier G, Cournac L (2002). Chlororespiration. Annual Review of Plant Biology, 53: 523-550
doi: 10.1146/annurev.arplant.53.100301.135242
44 Prommeenate P, Lennon A M, Markert C, Hippler M, Nixon P J (2004). Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803: identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. Journal of Biological Chemistry , 279(27): 28165-28173
doi: 10.1074/jbc.M401107200
45 Sazanov L A, Hinchliffe P (2006). Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science , 311: 1430-1436
doi: 10.1126/science.1123809
46 Schreiber U, Endo T, Mi H, Asada K (1995). Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant and Cell Physiology , 36: 873-882
47 Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A, Ogawa T (2001). Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proceedings of the National Academy of Sciences , 98: 11789-11794
doi: 10.1073/pnas.191258298
48 Shikanai T, Endo T (2000). Physiological function of a respiratory complex, NAD(P)H dehydrogenase in chloroplasts: dissection by chloroplast reverse genetics. Plant Biotechnology , 17(2): 79-86
49 Steinmüller K (1992). Nucleotide sequence and expression of the ndhH gene of the cyanobacterium Synechocystis sp. PCC6803. Plant Molecular Biology , 8: 135-137
doi: 10.1007/BF00018466
50 Tanaka Y, Katada S, Ishikawa H, Ogawa T, Takabe T (1997). Electron flow from NAD(P)H dehydrogenase to photosystem I is required for adaptation to salt shock in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology , 38: 1311-1318
51 Tchernov D, Helman Y, Keren N, Luz B, Ohad I, Reinhold L, Ogawa T, Kaplan A (2001). Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3- in cyanobacteria are driven by a photosystem I-generated ΔμH+. Journal of Biological Chemistry , 276(26): 23450-23455
doi: 10.1074/jbc.M101973200
52 Xu M, Ogawa T, Pakrasi H B, Mi H (2008). Identification and localization of the CupB protein involved in constitutive CO2 uptake in the cyanobacterium, Synechocystis sp. strain PCC 6803. Plant and Cell Physiology , 49(6): 994-997
doi: 10.1093/pcp/pcn074
53 Yeremenko N, Jeanjean R, Prommeenate P, Krasikov V, Nixon P J, Vermaas W F, Havaux M, Matthijs H C (2005). Open reading frame ssr2016 is required for antimycin A-sensitive photosystem I-driven cyclic electron flow in the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology , 46(8): 1433-1436
doi: 10.1093/pcp/pci147
54 Zhang P, Battchikova N, Jansen T, Appel J, Ogawa T, Aro E M (2004). Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. The Plant Cell , 16(12): 3326-3340
doi: 10.1105/tpc.104.026526
55 Zhang P, Battchikova N, Paakkarinen V, Katoh H, Iwai M, Ikeuchi M, Pakrasi H B, Ogawa T, Aro E M (2005). Isolation, subunit composition and interaction of the NDH-1 complexes from Thermosynechococcus elongatus BP-1. Biochemical Journal , 390(2): 513-520
doi: 10.1042/BJ20050390
[1] Hongbo GAO, Fuli GAO. Evolution of the chloroplast division machinery[J]. Front Biol, 2011, 6(5): 398-413.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed