Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (5) : 398-413    https://doi.org/10.1007/s11515-011-1139-1
REVIEW
Evolution of the chloroplast division machinery
Hongbo GAO1,2,3(), Fuli GAO1
1. College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; 2. National Engineering Laboratory for Tree Breeding, Beijing 100083, China; 3. Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing 100083, China
 Download: PDF(300 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution. Dramatic changes occurred during the process of the formation and evolution of chloroplasts, including the large-scale gene transfer from chloroplast to nucleus. However, there are still many essential characters remaining. For the chloroplast division machinery, FtsZ proteins, Ftn2, SulA and part of the division site positioning system— MinD and MinE are still conserved. New or at least partially new proteins, such as FtsZ family proteins FtsZ1 and ARC3, ARC6H, ARC5, PDV1/PDV2 and MCD1, were introduced for the division of chloroplasts during evolution. Some bacterial cell division proteins, such as FtsA, MreB, Ftn6, FtsW and FtsI, probably lost their function or were gradually lost. Thus, the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.

Keywords chloroplast division      evolution      cyanobacteria     
Corresponding Author(s): GAO Hongbo,Email:gaohongbo@bjfu.edu.cn   
Issue Date: 01 October 2011
 Cite this article:   
Hongbo GAO,Fuli GAO. Evolution of the chloroplast division machinery[J]. Front Biol, 2011, 6(5): 398-413.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1139-1
https://academic.hep.com.cn/fib/EN/Y2011/V6/I5/398
1 Adams D W, Errington J (2009). Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol , 7(9): 642–653
doi: 10.1038/nrmicro2198
2 Addinall S G, Lutkenhaus J (1996). FtsA is localized to the septum in an FtsZ-dependent manner. J Bacteriol , 178: 7167–7172
3 Allard J F, Cytrynbaum E N (2009). Force generation by a dynamic Z-ring in Escherichia coli cell division. Proc Natl Acad Sci USA , 106(1): 145–150
doi: 10.1073/pnas.0808657106
4 Amos L A, van den Ent F, Lowe J (2004). Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol , 16(1): 24–31
doi: 10.1016/j.ceb.2003.11.005
5 Beech P L, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson P R, McFadden G I (2000). Mitochondrial FtsZ in a chromophyte alga. Science , 287(5456): 1276–1279
doi: 10.1126/science.287.5456.1276
6 Bi E, Lutkenhaus J (1993). Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol , 175: 1118–1125
7 Bi E F, Lutkenhaus J (1991). FtsZ ring structure associated with division in Escherichia coli. Nature , 354(6349): 161–164
doi: 10.1038/354161a0
8 Bleazard W, McCaffery J M, King E J, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw J M (1999). The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol , 1(5): 298–304
doi: 10.1038/13014
9 Bork P, Sander C, Valencia A (1992). An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA , 89(16): 7290–7294
doi: 10.1073/pnas.89.16.7290
10 Bramhill D (1997). Bacterial cell division. Annu Rev Cell Dev Biol , 13(1): 395–424
doi: 10.1146/annurev.cellbio.13.1.395
11 Carballido-Lopez R (2006). The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev , 70(4): 888–909
doi: 10.1128/MMBR.00014-06
12 Carr J F, Hinshaw J E (1997). Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J Biol Chem , 272(44): 28030–28035
doi: 10.1074/jbc.272.44.28030
13 Cha J H, Stewart G C (1997). The divIVA minicell locus of Bacillus subtilis. J Bacteriol , 179: 1671–1683
14 Chen M S, Obar R A, Schroeder C C, Austin T W, Poodry C A, Wadsworth S C, Vallee R B (1991). Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature , 351(6327): 583–586
doi: 10.1038/351583a0
15 Chu K H, Qi J, Yu Z G, Anh V (2004). Origin and phylogeny of chloroplasts revealed by a simple correlation analysis of complete genomes. Mol Biol Evol , 21(1): 200–206
doi: 10.1093/molbev/msh002
16 Chugh J, Chatterjee A, Kumar A, Mishra R K, Mittal R, Hosur R V (2006). Structural characterization of the large soluble oligomers of the GTPase effector domain of dynamin. FEBS J , 273(2): 388–397
doi: 10.1111/j.1742-4658.2005.05072.x
17 Colletti K S, Tattersall E A, Pyke K A, Froelich J E, Stokes K D, Osteryoung K W (2000). A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol , 10(9): 507–516
doi: 10.1016/S0960-9822(00)00466-8
18 Cordell S C, Robinson E J, Lowe J (2003). Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci USA , 100(13): 7889–7894
doi: 10.1073/pnas.1330742100
19 Cullis C A, Vorster B J, Van Der Vyver C, Kunert K J (2009). Transfer of genetic material between the chloroplast and nucleus: how is it related to stress in plants? Ann Bot (Lond) , 103(4): 625–633
doi: 10.1093/aob/mcn173
20 Dai K, Lutkenhaus J (1992). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol , 174: 6145–6151
21 Dajkovic A, Mukherjee A, Lutkenhaus J (2008). Investigation of regulation of FtsZ assembly by SulA and development of a model for FtsZ polymerization. J Bacteriol , 190(7): 2513–2526
doi: 10.1128/JB.01612-07
22 Datta P, Dasgupta A, Bhakta S, Basu J (2002). Interaction between FtsZ and FtsW of Mycobacteriumtuberculosis. J Biol Chem , 277(28): 24983–24987
doi: 10.1074/jbc.M203847200
23 de Boer P, Crossley R, Rothfield L (1992a). The essential bacterial cell-division protein FtsZ is a GTPase. Nature , 359(6392): 254–256
doi: 10.1038/359254a0
24 de Boer P A, Crossley R E, Hand A R, Rothfield L I (1991). The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J , 10: 4371–4380
25 de Boer P A, Crossley R E, Rothfield L I (1989). A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell , 56(4): 641–649
doi: 10.1016/0092-8674(89)90586-2
26 de Boer P A, Crossley R E, Rothfield L I (1992b). Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J Bacteriol , 174: 63–70
27 Dewar S J, Begg K J, Donachie W D (1992). Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J Bacteriol , 174: 6314–6316
28 Dinkins R, Reddy M S, Leng M, Collins G B (2001). Overexpression of the Arabidopsis thalianaMinD1 gene alters chloroplast size and number in transgenic tobacco plants. Planta , 214(2): 180–188
doi: 10.1007/s004250100605
29 Douce R, Joyard J (1990). Biochemistry and function of the plastid envelope. Annu Rev Cell Biol , 6(1): 173–216
doi: 10.1146/annurev.cb.06.110190.001133
30 Douglas S E (1998). Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev , 8(6): 655–661
doi: 10.1016/S0959-437X(98)80033-6
31 Dyall S D, Brown M T, Johnson P J (2004). Ancient invasions: from endosymbionts to organelles. Science , 304(5668): 253–257
doi: 10.1126/science.1094884
32 Eberhardt C, Kuerschner L, Weiss D S (2003). Probing the catalytic activity of a cell division-specific transpeptidase in vivo with beta-lactams. J Bacteriol , 185(13): 3726–3734
doi: 10.1128/JB.185.13.3726-3734.2003
33 Egelman E H (2003). A tale of two polymers: new insights into helical filaments. Nat Rev Mol Cell Biol , 4(8): 621–630
doi: 10.1038/nrm1176
34 Ellis J L, Leech R M (1985). Cell-size and chloroplast size in relation to chloroplast replication in light-grown wheat leaves. Planta , 165(1): 120–125
doi: 10.1007/BF00392220
35 Eric Ottesen R Z, Gayle K (2010). Identification of a chloroplast division mutant coding for ARC6H, an ARC6 homolog that plays a nonredundant role. Plant Sci , 178(2): 114–122
doi: 10.1016/j.plantsci.2009.10.009
36 Erickson H P (1998). Atomic structures of tubulin and FtsZ. Trends Cell Biol , 8(4): 133–137
doi: 10.1016/S0962-8924(98)01237-9
37 Erickson H P (2009). Modeling the physics of FtsZ assembly and force generation. Proc Natl Acad Sci USA , 106(23): 9238–9243
doi: 10.1073/pnas.0902258106
38 Errington J, Daniel R A, Scheffers D J (2003). Cytokinesis in bacteria. Microbiol Mol Biol Rev , 67(1): 52–65
doi: 10.1128/MMBR.67.1.52-65.2003
39 Fischer-Friedrich E, Meacci G, Lutkenhaus J, Chate H, Kruse K (2010). Intra- and intercellular fluctuations in Min-protein dynamics decrease with cell length. Proc Natl Acad Sci USA , 107(14): 6134–6139
doi: 10.1073/pnas.0911708107
40 Fraipont C, Alexeeva S, Wolf B, van der Ploeg R, Schloesser M, den Blaauwen T, Nguyen-Disteche M (2011). The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology , 157(1): 251–259
doi: 10.1099/mic.0.040071-0
41 Fu X, Shih Y L, Zhang Y, Rothfield L I (2001). The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci USA , 98(3): 980–985
doi: 10.1073/pnas.031549298
42 Fujiwara M T, Hashimoto H, Kazama Y, Abe T, Yoshida S, Sato N, Itoh R D (2008). The assembly of the FtsZ ring at the mid-chloroplast division site depends on a balance between the activities of AtMinE1 and ARC11/AtMinD1. Plant Cell Physiol , 49(3): 345–361
doi: 10.1093/pcp/pcn012
43 Fujiwara M T, Nakamura A, Itoh R, Shimada Y, Yoshida S, Moller S G (2004). Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J Cell Sci , 117(11): 2399–2410
doi: 10.1242/jcs.01092
44 Fukushima N H, Brisch E, Keegan B R, Bleazard W, Shaw J M (2001). The GTPase effector domain sequence of the Dnm1p GTPase regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Mol Biol Cell , 12: 2756–2766
45 Gao H, Kadirjan-Kalbach D, Froehlich J E, Osteryoung K W (2003). ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci USA , 100(7): 4328–4333
doi: 10.1073/pnas.0530206100
46 Garcia M, Myouga F, Takechi K, Sato H, Nabeshima K, Nagata N, Takio S, Shinozaki K, Takano H (2008). An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development. Plant J , 53(6): 924–934
doi: 10.1111/j.1365-313X.2007.03379.x
47 Ghasriani H, Ducat T, Hart C T, Hafizi F, Chang N, Al-Baldawi A, Ayed S H, Lundstrom P, Dillon J A, Goto N K (2010). Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE. Proc Natl Acad Sci USA , 107(43): 18416–18421
doi: 10.1073/pnas.1007141107
48 Gilson P R, Yu X C, Hereld D, Barth C, Savage A, Kiefel B R, Lay S, Fisher P R, Margolin W, Beech P L (2003). Two Dictyostelium orthologs of the prokaryotic cell division protein FtsZ localize to mitochondria and are required for the maintenance of normal mitochondrial morphology. Eukaryot Cell , 2(6): 1315–1326
doi: 10.1128/EC.2.6.1315-1326.2003
49 Glynn J M, Froehlich J E, Osteryoung K W (2008). Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell , 20(9): 2460–2470
doi: 10.1105/tpc.108.061440
50 Glynn J M, Yang Y, Vitha S, Schmitz A J, Hemmes M, Miyagishima S Y, Osteryoung K W (2009). PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J , 59(5): 700–711
doi: 10.1111/j.1365-313X.2009.03905.x
51 Graumann P L (2007). Cytoskeletal elements in bacteria. Annu Rev Microbiol , 61(1): 589–618
doi: 10.1146/annurev.micro.61.080706.093236
52 Gray J C, Row P E (1995). Protein translocation across chloroplast envelope membranes. Trends Cell Biol , 5(6): 243–247
doi: 10.1016/S0962-8924(00)89018-2
53 Gray M W (1999). Evolution of organellar genomes. Curr Opin Genet Dev , 9(6): 678–687
doi: 10.1016/S0959-437X(99)00030-1
54 Gross J, Bhattacharya D (2009). Revaluating the evolution of the Toc and Tic protein translocons. Trends Plant Sci , 14(1): 13–20
doi: 10.1016/j.tplants.2008.10.003
55 Gu X, Verma D (1996). Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J , 15: 695–704
56 Harris E H, Boynton J E, Gillham N W (1994). Chloroplast ribosomes and protein synthesis. Microbiol Rev , 58: 700–754
57 Higashitani A, Higashitani N, Horiuchi K (1995). A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. Biochem Biophys Res Commun , 209(1): 198–204
doi: 10.1006/bbrc.1995.1489
58 Higashitani A, Ishii Y, Kato Y, Koriuchi K (1997). Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon. Mol Gen Genet , 254(4): 351–357
doi: 10.1007/s004380050426
59 Hinshaw J E (2000). Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol , 16(1): 483–519
doi: 10.1146/annurev.cellbio.16.1.483
60 Hinshaw J E, Schmid S L (1995). Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature , 374(6518): 190–192
doi: 10.1038/374190a0
61 Homi S, Takechi K, Tanidokoro K, Sato H, Takio S, Takano H (2009). The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens. Plant Cell Physiol , 50(12): 2047–2056
doi: 10.1093/pcp/pcp158
62 Howard M (2004). A mechanism for polar protein localization in bacteria. J Mol Biol , 335(2): 655–663
doi: 10.1016/j.jmb.2003.10.058
63 Howe C J, Barbrook A C, Koumandou V L, Nisbet R E, Symington H A, Wightman T F (2003). Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci , 358(1429): 99–107
doi: 10.1098/rstb.2002.1176
64 Hsieh C W, Lin T Y, Lai H M, Lin C C, Hsieh T S, Shih Y L (2010). Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol Microbiol , 75(2): 499–512
doi: 10.1111/j.1365-2958.2009.07006.x
65 Hu Z, Gogol E P, Lutkenhaus J (2002). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA , 99(10): 6761–6766
doi: 10.1073/pnas.102059099
66 Hu Z, Lutkenhaus J (1999). Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol , 34(1): 82–90
doi: 10.1046/j.1365-2958.1999.01575.x
67 Hu Z, Mukherjee A, Pichoff S, Lutkenhaus J (1999). The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc Natl Acad Sci USA , 96(26): 14819–14824
doi: 10.1073/pnas.96.26.14819
68 Hu Z, Saez C, Lutkenhaus J (2003). Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J Bacteriol , 185(1): 196–203
doi: 10.1128/JB.185.1.196-203.2003
69 Huang J, Cao C, Lutkenhaus J (1996). Interaction between FtsZ and inhibitors of cell division. J Bacteriol , 178: 5080–5085
70 Huisman O, D'Ari R, George J (1980). Further characterization of sfiA and sfiB mutations in Escherichia coli. J Bacteriol , 144: 185–191
71 Huisman O, D'Ari R, Gottesman S (1984). Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc Natl Acad Sci USA , 81(14): 4490–4494
doi: 10.1073/pnas.81.14.4490
72 Ishino F, Jung H K, Ikeda M, Doi M, Wachi M, Matsuhashi M (1989). New mutations fts-36, lts-33, and ftsW clustered in the mra region of the Escherichia coli chromosome induce thermosensitive cell growth and division. J Bacteriol , 171: 5523–5530
73 Itoh R, Fujiwara M, Nagata N, Yoshida S (2001). A chloroplast protein homologous to the eubacterial topological specificity factor minE plays a role in chloroplast division. Plant Physiol , 127(4): 1644–1655
doi: 10.1104/pp.010386
74 Ivanov V, Mizuuchi K (2010). Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins. Proc Natl Acad Sci USA , 107(18): 8071–8078
doi: 10.1073/pnas.0911036107
75 Jackson-Constan D, Akita M, Keegstra K (2001). Molecular chaperones involved in chloroplast protein import. Biochim Biophys Acta , 1541(1-2): 102–113
doi: 10.1016/S0167-4889(01)00148-3
76 Jarvis P, Soll J (2002). Toc, tic, and chloroplast protein import. Biochim Biophys Acta , 1590(1-3): 177–189
doi: 10.1016/S0167-4889(02)00176-3
77 Jeong W J, Park Y I, Suh K, Raven J A, Yoo O J, Liu J R (2002). A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts. Plant Physiol , 129(1): 112–121
doi: 10.1104/pp.000588
78 Jones C, Holland I B (1985). Role of the SulB (FtsZ) protein in division inhibition during the SOS response in Escherichia coli: FtsZ stabilizes the inhibitor SulA in maxicells. Proc Natl Acad Sci USA , 82(18): 6045–6049
doi: 10.1073/pnas.82.18.6045
79 Jones L J, Carballido-Lopez R, Errington J (2001). Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell , 104(6): 913–922
doi: 10.1016/S0092-8674(01)00287-2
80 Kasten B, Reski R (1997). β-Lactam antibiotics inhibit chloroplast division in a moss (Physcomitrella patens) but not in tomato (Lycopersicon esculentum). J Plant Physiol , 150: 137–140
81 Katayama N, Takano H, Sugiyama M, Takio S, Sakai A, Tanaka K, Kuroiwa H, Ono K (2003). Effects of antibiotics that inhibit the bacterial peptidoglycan synthesis pathway on moss chloroplast division. Plant Cell Physiol , 44(7): 776–781
doi: 10.1093/pcp/pcg096
82 Kelly R B (1995). Endocytosis. Ringing necks with dynamin. Nature , 374(6518): 116–117
doi: 10.1038/374116a0
83 Khattar M M, Begg K J, Donachie W D (1994). Identification of FtsW and characterization of a new ftsW division mutant of Escherichia coli. J Bacteriol , 176: 7140–7147
84 Kiefel B R, Gilson P R, Beech P L (2004). Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist , 155(1): 105–115
doi: 10.1078/1434461000168
85 Koksharova O A, Wolk C P (2002). A novel gene that bears a DnaJ motif influences cyanobacterial cell division. J Bacteriol , 184(19): 5524–5528
doi: 10.1128/JB.184.19.5524-5528.2002
86 Kosaka T, Ikeda K (1983a). Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol , 14(3): 207–225
doi: 10.1002/neu.480140305
87 Kosaka T, Ikeda K (1983b). Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J Cell Biol , 97(2): 499–507
doi: 10.1083/jcb.97.2.499
88 Kruse K, Howard M, Margolin W (2007). An experimentalist’s guide to computational modelling of the Min system. Mol Microbiol , 63(5): 1279–1284
doi: 10.1111/j.1365-2958.2007.05607.x
89 Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K, Itoh R (1998). The division apparatus of plastids and mitochondria. Int Rev Cytol , 181: 1–41
doi: 10.1016/S0074-7696(08)60415-5
90 Kuroiwa T, Misumi O, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Kuroiwa H (2008). Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings. Int Rev Cell Mol Biol , 271: 97–152
doi: 10.1016/S1937-6448(08)01203-3
91 Lackner L L, Raskin D M, de Boer P A (2003). ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro. J Bacteriol , 185(3): 735–749
doi: 10.1128/JB.185.3.735-749.2003
92 Lan G, Daniels B R, Dobrowsky T M, Wirtz D, Sun S X (2009). Condensation of FtsZ filaments can drive bacterial cell division. Proc Natl Acad Sci USA , 106(1): 121–126
doi: 10.1073/pnas.0807963106
93 Lan G, Wolgemuth C W, Sun S X (2007). Z-ring force and cell shape during division in rod-like bacteria. Proc Natl Acad Sci USA , 104(41): 16110–16115
doi: 10.1073/pnas.0702925104
94 Lara B, Ayala J A (2002). Topological characterization of the essential Escherichia coli cell division protein FtsW. FEMS Microbiol Lett , 216(1): 23–32
doi: 10.1111/j.1574-6968.2002.tb11409.x
95 Leech R M, Thomson W W, Platt-Aloia K A (1981). Observations on the mechanism of chloroplast division in higher-plants. New Phytol , 87(1): 1–9
doi: 10.1111/j.1469-8137.1981.tb01686.x
96 Low H H, Lowe J (2010). Dynamin architecture-from monomer to polymer. Curr Opin Struct Biol , 20(6): 791–798
doi: 10.1016/j.sbi.2010.09.011
97 Lowe J, Amos L A (1998). Crystal structure of the bacterial cell-division protein FtsZ. Nature , 391(6663): 203–206
doi: 10.1038/34472
98 Lowe J, van den Ent F, Amos L A (2004). Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct , 33(1): 177–198
doi: 10.1146/annurev.biophys.33.110502.132647
99 Lutkenhaus J (2002). Dynamic proteins in bacteria. Curr Opin Microbiol , 5(6): 548–552
doi: 10.1016/S1369-5274(02)00376-4
100 Lutkenhaus J (2007). Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem , 76(1): 539–562
doi: 10.1146/annurev.biochem.75.103004.142652
101 Ma X, Ehrhardt D W, Margolin W (1996). Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci USA , 93(23): 12998–13003
doi: 10.1073/pnas.93.23.12998
102 Ma X, Margolin W (1999). Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol , 181: 7531–7544
103 Machida M, Takechi K, Sato H, Chung S J, Kuroiwa H, Takio S, Seki M, Shinozaki K, Fujita T, Hasebe M, Takano H (2006). Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. Proc Natl Acad Sci USA , 103(17): 6753–6758
doi: 10.1073/pnas.0510693103
104 Maple J, Chua N H, Moller S G (2002). The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J , 31(3): 269–277
doi: 10.1046/j.1365-313X.2002.01358.x
105 Maple J, Fujiwara M T, Kitahata N, Lawson T, Baker N R, Yoshida S, Moller S G (2004). GIANT CHLOROPLAST 1 is essential for correct plastid division in Arabidopsis. Curr Biol , 14(9): 776–781
doi: 10.1016/j.cub.2004.04.031
106 Maple J, Vojta L, Soll J, Moller S G (2007). ARC3 is a stromal Z-ring accessory protein essential for plastid division. EMBO Rep , 8(3): 293–299
doi: 10.1038/sj.embor.7400902
107 Marbouty M, Saguez C, Cassier-Chauvat C, Chauvat F (2009). ZipN, an FtsA-like orchestrator of divisome assembly in the model cyanobacterium Synechocystis PCC6803. Mol Microbiol , 74(2): 409–420
doi: 10.1111/j.1365-2958.2009.06873.x
108 Margolin W (2000). Themes and variations in prokaryotic cell division. FEMS Microbiol Rev , 24(4): 531–548
doi: 10.1111/j.1574-6976.2000.tb00554.x
109 Margolin W (2001). Bacterial cell division: a moving MinE sweeper boggles the MinD. Curr Biol , 11(10): R395–R398
doi: 10.1016/S0960-9822(01)00217-2
110 Marrison J L, Rutherford S M, Robertson E J, Lister C, Dean C, Leech R M (1999). The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J , 18(6): 651–662
doi: 10.1046/j.1365-313x.1999.00500.x
111 Martin W (2003). Gene transfer from organelles to the nucleus: Frequent and in big chunks. Proc Natl Acad Sci USA , 100(15): 8612–8614
doi: 10.1073/pnas.1633606100
112 Mazouni K, Domain F, Cassier-Chauvat C, Chauvat F (2004). Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. Mol Microbiol , 52(4): 1145–1158
doi: 10.1111/j.1365-2958.2004.04042.x
113 McAndrew R S, Froehlich J E, Vitha S, Stokes K D, Osteryoung K W (2001). Colocalization of plastid division proteins in the chloroplast stromal compartment establishes a new functional relationship between FtsZ1 and FtsZ2 in higher plants. Plant Physiol , 127(4): 1656–1666
doi: 10.1104/pp.010542
114 McAndrew R S, Olson B J, Kadirjan-Kalbach D K, Chi-Ham C L, Vitha S, Froehlich J E, Osteryoung K W (2008). In vivo quantitative relationship between plastid division proteins FtsZ1 and FtsZ2 and identification of ARC6 and ARC3 in a native FtsZ complex. Biochem J , 412(2): 367–378
doi: 10.1042/BJ20071354
115 McFadden G I (1999). Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol , 2(6): 513–519
doi: 10.1016/S1369-5266(99)00025-4
116 Mercer K L, Weiss D S (2002). The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol , 184(4): 904–912
doi: 10.1128/jb.184.4.904-912.2002
117 Miyagishima S, Takahara M, Kuroiwa T (2001). Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell , 13: 707–721
118 Miyagishima S Y, Froehlich J E, Osteryoung K W (2006). PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. Plant Cell , 18(10): 2517–2530
doi: 10.1105/tpc.106.045484
119 Miyagishima S Y, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003). A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell , 15(3): 655–665
doi: 10.1105/tpc.009373
120 Mori T, Kuroiwa H, Takahara M, Miyagishima S Y, Kuroiwa T (2001). Visualization of an FtsZ ring in chloroplasts of Lilium longiflorum leaves. Plant Cell Physiol , 42(6): 555–559
doi: 10.1093/pcp/pce095
121 Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J, Somers W S (2000). The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J , 19(13): 3179–3191
doi: 10.1093/emboj/19.13.3179
122 Mukherjee A, Cao C, Lutkenhaus J (1998). Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci USA , 95(6): 2885–2890
doi: 10.1073/pnas.95.6.2885
123 Mukherjee A, Saez C, Lutkenhaus J (2001). Assembly of an FtsZ mutant deficient in GTPase activity has implications for FtsZ assembly and the role of the Z ring in cell division. J Bacteriol , 183(24): 7190–7197
doi: 10.1128/JB.183.24.7190-7197.2001
124 Mulder E, Woldringh C L, Tetart F, Bouche J P (1992). New minC mutations suggest different interactions of the same region of division inhibitor MinC with proteins specific for minD and dicB coinhibition pathways. J Bacteriol , 174: 35–39
125 Nakamura M, Maruyama I N, Soma M, Kato J, Suzuki H, Horota Y (1983). On the process of cellular division in Escherichia coli: nucleotide sequence of the gene for penicillin-binding protein 3. Mol Gen Genet , 191(1): 1–9
doi: 10.1007/BF00330881
126 Nakanishi H, Suzuki K, Kabeya Y, Miyagishima S Y (2009). Plant-specific protein MCD1 determines the site of chloroplast division in concert with bacteria-derived MinD. Curr Biol , 19(2): 151–156
doi: 10.1016/j.cub.2008.12.018
127 Nogales E, Wolf S G, Downing K H (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature , 391(6663): 199–203
doi: 10.1038/34465
128 Olson B J, Wang Q, Osteryoung K W (2010). GTP-dependent heteropolymer formation and bundling of chloroplast FtsZ1 and FtsZ2. J Biol Chem , 285(27): 20634–20643
doi: 10.1074/jbc.M110.122614
129 Oross J W, Possingham J V (1989). Ultrastructural features of the constricted region of dividing plastids. Protoplasma , 150(2-3): 131–138
doi: 10.1007/BF01403669
130 Osawa M, Anderson D E, Erickson H P (2008). Reconstitution of contractile FtsZ rings in liposomes. Science , 320(5877): 792–794
doi: 10.1126/science.1154520
131 Osteryoung K W (2000). Organelle fission. Crossing the evolutionary divide. Plant Physiol , 123(4): 1213–1216
doi: 10.1104/pp.123.4.1213
132 Osteryoung K W, McAndrew R S (2001). The plastid division machine. Annu Rev Plant Physiol Plant Mol Biol , 52(1): 315–333
doi: 10.1146/annurev.arplant.52.1.315
133 Osteryoung K W, Nunnari J (2003). The division of endosymbiotic organelles. Science , 302(5651): 1698–1704
doi: 10.1126/science.1082192
134 Osteryoung K W, Pyke K A (1998). Plastid division: evidence for a prokaryotically derived mechanism. Curr Opin Plant Biol , 1(6): 475–479
doi: 10.1016/S1369-5266(98)80038-1
135 Osteryoung K W, Stokes K D, Rutherford S M, Percival A L, Lee W Y (1998). Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell , 10: 1991–2004
136 Osteryoung K W, Vierling E (1995). Conserved cell and organelle division. Nature , 376(6540): 473–474
doi: 10.1038/376473b0
137 Pelloquin L, Belenguer P, Menon Y, Ducommun B (1998). Identification of a fission yeast dynamin-related protein involved in mitochondrial DNA maintenance. Biochem Biophys Res Commun , 251(3): 720–726
doi: 10.1006/bbrc.1998.9539
138 Pichoff S, Lutkenhaus J (2005). Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol , 55(6): 1722–1734
doi: 10.1111/j.1365-2958.2005.04522.x
139 Pichoff S, Lutkenhaus J (2007). Identification of a region of FtsA required for interaction with FtsZ. Mol Microbiol , 64(4): 1129–1138
doi: 10.1111/j.1365-2958.2007.05735.x
140 Pogliano J, Pogliano K, Weiss D S, Losick R, Beckwith J (1997). Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci USA , 94(2): 559–564
doi: 10.1073/pnas.94.2.559
141 Popp D, Narita A, Maeda K, Fujisawa T, Ghoshdastider U, Iwasa M, Maeda Y, Robinson R C (2010). Filament structure, organization, and dynamics in MreB sheets. J Biol Chem , 285(21): 15858–15865
doi: 10.1074/jbc.M109.095901
142 Possingh J S (1969). Changes in chloroplast number per cell during leaf development in spinach. Planta , 86(2): 186–194
doi: 10.1007/BF00379826
143 Praefcke G J, McMahon H T (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol , 5(2): 133–147
doi: 10.1038/nrm1313
144 Pyke K A (1999). Plastid division and development. Plant Cell , 11: 549–556
145 Pyke K A, Leech R M (1994). A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol , 104: 201–207
146 Pyke K A, Rutherford S M, Robertson E J, Leech R M (1994). arc6, a fertile Arabidopsis mutant with only two mesophyll cell chloroplasts. Plant Physiol , 106: 1169–1177
147 Ramachandran R, Pucadyil T J, Liu Y W, Acharya S, Leonard M, Lukiyanchuk V, Schmid S L (2009). Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol Biol Cell , 20(22): 4630–4639
doi: 10.1091/mbc.E09-08-0683
148 Ramachandran R, Surka M, Chappie J S, Fowler D M, Foss T R, Song B D, Schmid S L (2007). The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J , 26(2): 559–566
doi: 10.1038/sj.emboj.7601491
149 Raskin D M, de Boer P A (1999a). MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J Bacteriol , 181: 6419–6424
150 Raskin D M, de Boer P A (1999b). Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA , 96(9): 4971–4976
doi: 10.1073/pnas.96.9.4971
151 Raven J A, Allen J F (2003). Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol , 4(3): 209
doi: 10.1186/gb-2003-4-3-209
152 RayChaudhuri D, Park J T, and the RayChaudhuri (1992). Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature , 359(6392): 251–254
doi: 10.1038/359251a0
153 Raynaud C, Cassier-Chauvat C, Perennes C, Bergounioux C (2004). An Arabidopsis homolog of the bacterial cell division inhibitor SulA is involved in plastid division. Plant Cell , 16(7): 1801–1811
doi: 10.1105/tpc.022335
154 Reddy M S, Dinkins R, Collins G B (2002). Overexpression of the Arabidopsis thaliana MinE1 bacterial division inhibitor homologue gene alters chloroplast size and morphology in transgenic Arabidopsis and tobacco plants. Planta , 215(2): 167–176
doi: 10.1007/s00425-001-0728-7
155 Rensing S A, Kiessling J, Reski R, Decker E L (2004). Diversification of ftsZ during early land plant evolution. J Mol Evol , 58(2): 154–162
doi: 10.1007/s00239-003-2535-1
156 Rensing S A, Lang D, Zimmer A D, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P F, Lindquist E A, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk W B, Barker E, Bennetzen J L, Blankenship R, Cho S H, Dutcher S K, Estelle M, Fawcett J A, Gundlach H, Hanada K, Heyl A, Hicks K A, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson D R, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton P J, Sanderfoot A, Schween G, Shiu S H, Stueber K, Theodoulou F L, Tu H, Van de Peer Y, Verrier P J, Waters E, Wood A, Yang L, Cove D, Cuming A C, Hasebe M, Lucas S, Mishler B D, Reski R, Grigoriev I V, Quatrano R S, Boore J L (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science , 319(5859): 64–69
doi: 10.1126/science.1150646
157 Reumann S, Davila-Aponte J, Keegstra K (1999). The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. Proc Natl Acad Sci USA , 96(2): 784–789
doi: 10.1073/pnas.96.2.784
158 Rico A I, Garcia-Ovalle M, Mingorance J, Vicente M (2004). Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol Microbiol , 53(5): 1359–1371
doi: 10.1111/j.1365-2958.2004.04245.x
159 Robertson E J, Pyke K A, Leech R M (1995). arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices. J Cell Sci , 108(Pt 9): 2937–2944
160 Robertson E J, Rutherford S M, Leech R M (1996). Characterization of chloroplast division using the Arabidopsis mutant arc5. Plant Physiol , 112(1): 149–159
doi: 10.1104/pp.112.1.149
161 Romberg L, Levin P A (2003). Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol , 57(1): 125–154
doi: 10.1146/annurev.micro.57.012903.074300
162 Rothfield L, Justice S, Garcia-Lara J (1999). Bacterial cell division. Annu Rev Genet , 33(1): 423–448
doi: 10.1146/annurev.genet.33.1.423
163 Salim K, Bottomley M J, Querfurth E, Zvelebil M J, Gout I, Scaife R, Margolis R L, Gigg R, Smith C I, Driscoll P C, Waterfield M D, Panayotou G (1996). Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J , 15: 6241–6250
164 Sanchez M, Valencia A, Ferrandiz M J, Sander C, Vicente M (1994). Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J , 13: 4919–4925
165 Saurer W, Possingham J V (1970). Studies on the growth of spinach leaves (Spinacea oleracea). J Exp Biol , 21: 151–158
166 Scheffers D, Driessen A J (2001). The polymerization mechanism of the bacterial cell division protein FtsZ. FEBS Lett , 506(1): 6–10
doi: 10.1016/S0014-5793(01)02855-1
167 Scheffers D J, de Wit J G, den Blaauwen T, Driessen A J (2002). GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry , 41(2): 521–529
doi: 10.1021/bi011370i
168 Scheffers D J, den Blaauwen T, Driessen A J (2000). Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Mol Microbiol , 35(5): 1211–1219
doi: 10.1046/j.1365-2958.2000.01791.x
169 Scheffers D J, Driessen A J (2002). Immediate GTP hydrolysis upon FtsZ polymerization. Mol Microbiol , 43(6): 1517–1521
doi: 10.1046/j.1365-2958.2002.02828.x
170 Schmitz A J, Glynn J M, Olson B J, Stokes K D, Osteryoung K W (2009). Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. Mol Plant , 2(6): 1211–1222
doi: 10.1093/mp/ssp077
171 Sesaki H, Jensen R E (1999). Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol , 147(4): 699–706
doi: 10.1083/jcb.147.4.699
172 Shimada H, Koizumi M, Kuroki K, Mochizuki M, Fujimoto H, Ohta H, Masuda T, Takamiya K (2004). ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol , 45(8): 960–967
doi: 10.1093/pcp/pch130
173 Shiomi D, Margolin W (2007). The C-terminal domain of MinC inhibits assembly of the Z ring in Escherichia coli. J Bacteriol , 189(1): 236–243
doi: 10.1128/JB.00666-06
174 Smirnova E, Shurland D L, Newman-Smith E D, Pishvaee B, van der Bliek A M (1999). A model for dynamin self-assembly based on binding between three different protein domains. J Biol Chem , 274(21): 14942–14947
doi: 10.1074/jbc.274.21.14942
175 Stokes K D, McAndrew R S, Figueroa R, Vitha S, Osteryoung K W (2000). Chloroplast division and morphology are differentially affected by overexpression of FtsZ1 and FtsZ2 genes in Arabidopsis. Plant Physiol , 124(4): 1668–1677
doi: 10.1104/pp.124.4.1668
176 Stokes K D, Osteryoung K W (2003). Early divergence of the FtsZ1 and FtsZ2 plastid division gene families in photosynthetic eukaryotes. Gene , 320: 97–108
doi: 10.1016/S0378-1119(03)00814-X
177 Strepp R, Scholz S, Kruse S, Speth V, Reski R (1998). Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA , 95(8): 4368–4373
doi: 10.1073/pnas.95.8.4368
178 Stricker J, Maddox P, Salmon E D, Erickson H P (2002). Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci USA , 99(5): 3171–3175
doi: 10.1073/pnas.052595099
179 Suefuji K, Valluzzi R (2002). Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. Proc Natl Acad Sci USA , 99(26): 16776–16781
doi: 10.1073/pnas.262671699
180 Sun Q, Margolin W (1998). FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol , 180: 2050–2056
181 Sun Q, Yu X C, Margolin W (1998). Assembly of the FtsZ ring at the central division site in the absence of the chromosome. Mol Microbiol , 29(2): 491–503
doi: 10.1046/j.1365-2958.1998.00942.x
182 Sweitzer S M, Hinshaw J E (1998). Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell , 93(6): 1021–1029
doi: 10.1016/S0092-8674(00)81207-6
183 Taghbalout A, Ma L, Rothfield L (2006). Role of MinD-membrane association in Min protein interactions. J Bacteriol , 188(8): 2993–3001
doi: 10.1128/JB.188.8.2993-3001.2006
184 Takahara M, Takahashi H, Matsunaga S, Miyagishima S, Takano H, Sakai A, Kawano S, Kuroiwa T (2000). A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae. Mol Gen Genet , 264(4): 452–460
doi: 10.1007/s004380000307
185 Takano H, Takechi K (2010). Plastid peptidoglycan. Biochim Biophys Acta , 1800: 144–151
186 Takei K, Haucke V, Slepnev V, Farsad K, Salazar M, Chen H, De Camilli P (1998). Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell , 94(1): 131–141
doi: 10.1016/S0092-8674(00)81228-3
187 Takei K, McPherson P S, Schmid S L, De Camilli P (1995). Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature , 374: 186–190
doi: 10.1038/374186a0
188 Tavva V S, Collins G B, Dinkins R D (2006). Targeted overexpression of the Escherichia coli MinC protein in higher plants results in abnormal chloroplasts. Plant Cell Rep , 25(4): 341–348
doi: 10.1007/s00299-005-0086-1
189 Timmis J N, Ayliffe M A, Huang C Y, Martin W (2004). Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet , 5(2): 123–135
doi: 10.1038/nrg1271
190 Trusca D, Scott S, Thompson C, Bramhill D (1998). Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J Bacteriol , 180: 3946–3953
191 van den Ent F, Amos L, Lowe J (2001a). Bacterial ancestry of actin and tubulin. Curr Opin Microbiol , 4(6): 634–638
doi: 10.1016/S1369-5274(01)00262-4
192 van den Ent F, Amos L A, Lowe J (2001b). Prokaryotic origin of the actin cytoskeleton. Nature , 413(6851): 39–44
doi: 10.1038/35092500
193 van den Ent F, Moller-Jensen J, Amos L A, Gerdes K, Lowe J (2002). F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J , 21(24): 6935–6943
doi: 10.1093/emboj/cdf672
194 Vesteg M, Vacula R, Krajcovic J (2009). On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability — review. Folia Microbiol (Praha) , 54(4): 303–321
doi: 10.1007/s12223-009-0048-z
195 Vitha S, Froehlich J E, Koksharova O, Pyke K A, van Erp H, Osteryoung K W (2003). ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell , 15(8): 1918–1933
doi: 10.1105/tpc.013292
196 Vitha S, McAndrew R S, Osteryoung K W (2001). FtsZ ring formation at the chloroplast division site in plants. J Cell Biol , 153(1): 111–120
doi: 10.1083/jcb.153.1.111
197 Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M (1997). Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA , 94(11): 5967–5972
doi: 10.1073/pnas.94.11.5967
198 Wang S, Arellano-Santoyo H, Combs P A, Shaevitz J W (2010). Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc Natl Acad Sci USA , 107(20): 9182–9185
doi: 10.1073/pnas.0911517107
199 Warnock D E, Schmid S L (1996). Dynamin GTPase, a force-generating molecular switch. Bioessays , 18(11): 885–893
doi: 10.1002/bies.950181107
200 Weiss D S, Chen J C, Ghigo J M, Boyd D, Beckwith J (1999). Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol , 181: 508–520
201 Weiss D S, Pogliano K, Carson M, Guzman L M, Fraipont C, Nguyen-Disteche M, Losick R, Beckwith J (1997). Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Mol Microbiol , 25(04): 671–681
doi: 10.1046/j.1365-2958.1997.5041869.x
202 Wijsman H J, Koopman C R (1976). The relation of the genes envA and ftsA in Escherichia coli. Mol Gen Genet , 147(1): 99–102
doi: 10.1007/BF00337942
203 Wilsbach K, Payne G S (1993). Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in Saccharomyces cerevisiae. EMBO J , 12: 3049–3059
204 Wissel M C, Weiss D S (2004). Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN. J Bacteriol , 186(2): 490–502
doi: 10.1128/JB.186.2.490-502.2004
205 Xiong A S, Peng R H, Zhuang J, Gao F, Zhu B, Fu X Y, Xue Y, Jin X F, Tian Y S, Zhao W, Yao Q H (2009). Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnol Adv , 27(4): 340–347
doi: 10.1016/j.biotechadv.2009.01.012
206 Yamamoto K, Pyke K A, Kiss J Z (2002). Reduced gravitropism in inflorescence stems and hypocotyls, but not roots, of Arabidopsis mutants with large plastids. Physiol Plant , 114(4): 627–636
doi: 10.1034/j.1399-3054.2002.1140417.x
207 Yan K, Pearce K H, Payne D J (2000). A conserved residue at the extreme C-terminus of FtsZ is critical for the FtsA-FtsZ interaction in Staphylococcus aureus. Biochem Biophys Res Commun , 270(2): 387–392
doi: 10.1006/bbrc.2000.2439
208 Zhang M, Hu Y, Jia J, Li D, Zhang R, Gao H, He Y (2009). CDP1, a novel component of chloroplast division site positioning system in Arabidopsis. Cell Res , 19(7): 877–886
doi: 10.1038/cr.2009.78
209 Zheng J, Cahill S M, Lemmon M A, Fushman D, Schlessinger J, Cowburn D (1996). Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity. J Mol Biol , 255(1): 14–21
doi: 10.1006/jmbi.1996.0002
[1] Meng WANG,Kasturi BANERJEE,Harriet BAKER,John W. CAVE. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter[J]. Front. Biol., 2015, 10(1): 74-90.
[2] Jeremy GROSS, Ian J. PASSMORE, Jade C. S. CHUNG, Olena RZHEPISHEVSKA, Madeleine RAMSTEDT, Martin WELCH. Universal soldier: Pseudomonas aeruginosa – an opportunistic generalist[J]. Front Biol, 2013, 8(4): 387-394.
[3] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
[4] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
[5] P. CHELLAPANDI. Molecular evolution of methanogens based on their metabolic facets[J]. Front Biol, 2011, 6(6): 490-503.
[6] S. PEN-MOURATOV, N. BERG, N. GENZER, S. UKABI, D. SHARGIL, Y. STEINBERGER. Do slope orientation and sampling location determine soil biota composition?[J]. Front Biol Chin, 2009, 4(3): 364-375.
[7] Weimin MA. Identification, regulation and physiological functions of multiple NADPH dehydrogenase complexes in cyanobacteria[J]. Front Biol Chin, 2009, 4(2): 137-142.
[8] WU Zhengyi, SUN Hang, ZHOU Zhekun, PENG Hua, LI Dezhu. Origin and differentiation of endemism in the flora of China[J]. Front. Biol., 2007, 2(2): 125-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed